


PROJECT DETAILS

Project acronym: CHAISE
Project name: A Blueprint for Sectoral Cooperation on Blockchain

Skill Development
Project code: 621646-EPP-1-2020-1-FR-EPPKA2-SSA-B

Document Information

Document ID name: CHAISE_WP5_D5.2.1_CHAISECurriculumStructure_2
023-05-30

Document title: D5.2.1_CHAISECurriculumStructure

Type: Report
Date of Delivery: 30/05/2023
WP Leader: UT
Task Leader: UPC
Implementation Partner: UPC
Dissemination level: Public

DOCUMENT HISTORY
Versions Date Changes Type of change Delivered by

1.0.0 25/05/2022 Initial document - UPC

1.0.1 06/06/2022 Lecture Content - UPC

1.0.2 10/06/2022 EQF/QA Scheme - ACQUIN

1.0.3 20/06/2022 Feedback - UPC

1.0.4 04/08/2022 Last feedback - UPC

1.0.5 20/11/2022 Annex - UPC

DISCLAIMER
The European Commission support for the production of this publication does not constitute an endorsement
of the contents which reflects the views only of the authors, and the Commission cannot be held responsible
for any use which may be made of the information contained therein.

This document is proprietary of the CHAISE Consortium. Project material developed in the context of Project
Management & Implementation activities is not allowed to be copied or distributed in any form or by any
means, without the prior written agreement of the CHAISE consortium.

2

D5.2.1_CHAISE curriculum structure



CHAISE Consortium

Partner
Number Participant organisation name Short name Country

1 Université Claude Bernard Lyon 1 UCBL FR

2 International Association of Trusted Blockchain
Applications INATBA BE

3 Fujitsu Technology Solutions NV FUJITSU BE
4 Ministry of Education and Religious Affairs YPEPTH GR
5 ECQA GmbH ECQA AT
6 DIGITALEUROPE AISBL DIGITALEUROPE BE
7 IOTA Stiftung IOTA DE
8 Universitat Politècnica de Catalunya UPC ES
9 Duale Hochschule Baden-Württemberg DHBW DE
10 Associazione CIMEA CIMEA IT
11 INTRASOFT International S.A. INTRASOFT LU

12
Institute of the Republic of Slovenia for Vocational

Education and Training CPI SI

13 European DIGITAL SME Alliance DIGITAL SME BE
14 University of Tartu UT EE
15 Univerza V Ljubljani UL SI

16 BerChain e.V. BERCHAIN DE

17 Italia4Blockchain ITALIA4BLOCKCHAIN IT

18 Autoritatea Naţională pentru Calificări ANC RO

19
Akkreditierungs ,Certifizierungs- und

Qualitätssicherungs- Institut e.V. ACQUIN DE

20 EXELIA EXELIA GR
21 INDUSTRIA Technology Ltd INDUSTRIA BG
22 Crypto4all C4A FR
23 Economic and Social Research Institute ESRI IE

3

D5.2.1_CHAISE curriculum structure



Abbreviations
AF
CEDEFOP
CV

Application Form
European Centre for the Development of Vocational Training
Curriculum

D Deliverable
DG Directorate General
EACEA Education, Audiovisual and Culture Executive Agency
EQF European Qualification Framework
EC
ECVET

European Commission
European Credit system for Vocational Education and Training

EU European Union
D Deliverable
ICT Information and Communications Technology
KPI Key Performance Indicator
M Month
MOOC Massive Open Online Course
OER Open Educational Resources
PM Project Management
PMT Project Management Team
PT Points
QA Quality Assurance
SC Steering Committee
SME Small and Medium-sized Enterprise
SSA Sector Skill Alliance
T Task
TL Task Leader
VET Vocational Education and Training
WP Work Package
WPL Work Package Leader

4

D5.2.1_CHAISE curriculum structure



TABLE OF CONTENTS

Abbreviations 4

1. Introduction 8

2. Requirements 9

3. CV Structure 9
3.1 Learning Outcomes 10

3.1.1 Definition of the learning outcomes per module divided by Knowledge, Skills,
Responsibility and Autonomy. 11
3.1.2 Definition of the curriculum modules and the different learning paths for
Developers, Architects or Managers. 11

3.2 EQF Level 11
3.3 CV Modules 12

3.3.1 Modules list 13
3.3.2 Modules Structure 13
3.3.3 Modules Content 15
3.3.4 Lecture Example 17

3.4 CV Training and Teaching Methodology 17
3.4.1 Methodology 17
3.4.2. EQF5 Level Justification and challenges 18

3.5 CV Performance 20
3.6 CV Hours Structure 22

4. QA Scheme 25
4.1 Introduction 25
4.2 Involved education members 25

References 38

ANNEX 40

5

D5.2.1_CHAISE curriculum structure



LIST OF TABLES

TABLE 1 - MODULES CONTENT

TABLE 2 - HOURS STRUCTURE

TABLE 3 - INTERNATIONAL CERTIFICATION PROCEDURE

6

D5.2.1_CHAISE curriculum structure



LIST OF FIGURES

FIGURE 1 - REQUIREMENTS OF THE TASK T5.2

FIGURE 2 - CV LEARNING PATHS

FIGURE 3 - EQF5

FIGURE 4 - EQF6

FIGURE 5 - ADAPTION TO EQF6

FIGURE 6 - BLOOM TAXONOMY

7

D5.2.1_CHAISE curriculum structure



1. Introduction

CHAISE is a Sector Skills Alliance financed by the Erasmus+ programme with the
mission of developing a strategic approach on blockchain skills development for
Europe as well as delivering future-proof training solutions, in order to tackle
blockchain skill shortages and to respond to the current and future skill needs of the
European Blockchain workforce.

The project is divided in various work packages and this document is focused on the
WP5 Joint Curriculum Design and Delivery and specifically on the second task: T5.2
Design of CHAISE Curriculum Structure.

The main target of this task is to define the CHAISE CV Structure from the modules,
hours and lectures perspective. Below, the objectives are described:

● OBJECTIVE 1: Definition of a sector-specific VET curriculum structure. 5
Semester duration CV structure with 1,200 teaching hours and 900 hours
work-based learning (equivalent to 150 ECVET).

● OBJECTIVE 2: Create learning units with the following specifications:
duration, weighting of outcomes, learning methods and assessment criteria
according to ECVET principles.

● OBJECTIVE 3: Ensure that the curriculum corresponds to 5th or 6th EQF
level.

● OBJECTIVE 4: Define QA scheme and procedures.

In the following sections, the document defines the main requirements, methodology
and structure of the global CV followed by an explanation focused on the CV
modules itself. Finally, the QA scheme of the CV is detailed.
 
 

8

D5.2.1_CHAISE curriculum structure



 2. Requirements

From the document “CHAISE_Detailed description of the Project”, the main
requirements to be taken into account for the design and creation of the curriculum
structure have been extracted:

FIGURE 1 - REQUIREMENTS OF THE TASK T5.2

9

D5.2.1_CHAISE curriculum structure



3. CV Structure

Once the main requirements have been identified, we proceed to define the CV and
its respective modules based on the following steps:

● Review and apply the results of the previous task (T5.1) in which the learning
outcomes have been defined for the design of the CV structure.

● Decide the level of definition and teaching of the contents of the module based
on the European Qualification Framework (EQF) and the requisites of the
project.

● Definition of the modules and associated lectures that form the structure of the
curriculum.

● Analyse and define the best methodology for teaching and evaluating the
curriculum.

● Finally, design of the complete CHAISE curriculum structure with the
corresponding hours per module.

 

 
 
 
 
 

10

D5.2.1_CHAISE curriculum structure



 3.1 Learning Outcomes

The task T5.1 was focused on defining what learners should know, understand and
be able to do upon successful completion of the “CHAISE” Blockchain course. The
information was defined in the document D5.1.1 - Blockchain learning outcomes
report.

In order to work on the correct structure of the curriculum, the following results of the
previous task have been taken into account:

3.1.1 Definition of the learning outcomes per module divided by Knowledge, Skills,
Responsibility and Autonomy.

The content of the different modules have been designed following the information
obtained in that previous task. Also, the distribution of the lectures and hours per
lecture have been done to benefit the achievement of the competencies described in
the learning outcomes.

The modules have been divided by the CHAISE partners that collaborate in the task
T5.3 to create the content of each of them, as listed in the section 3.4 CV Modules.

3.1.2 Definition of the curriculum modules and the different learning paths for
Developers, Architects or Managers.

FIGURE 2 - CV LEARNING PATHS

11

D5.2.1_CHAISE curriculum structure



 3.2 EQF Level
 
 The project description states that the EQF level for this CHAISE CV should be
between 5 and 6. The following captures are the definition of the levels according to
the European Union:
 
 EQF - Level 5

 
 FIGURE 3 - EQF5

EQF- Level 6

FIGURE 4 - EQF6

Based on this information, an analysis and comparison of the levels has been carried
out with the different partners of this task to determine the level that best agrees with
the objectives of the project and with the adaptation of the CV to the methodology of
teaching of the different countries in which the CV will be applied.

The result of that analysis: The CHAISE CV will be designed to accomplish the
EQF5 and some methodological and concept advice will be given in every
module to easily adapt the CV to a EQF6.

In section 3.3.2 where the module structure is described, there is an explanation
about the advice that will be given in every lecture to help the teacher to adapt the
level of the CV from EQF5 to EQF6 if desired.

12

D5.2.1_CHAISE curriculum structure



 3.3 CV Modules
 
 In this section, the modules obtained from the taks T5.1 will be listed, minimally
described, and structured according to the requirements of the project. Also, the
section contains the assignment of each module to a partner of task T5.3 and a list of
the readings already defined by each of them.

3.3.1 Modules list

 1. Introduction to Blockchain Technology.
 2. Regulation, Legal aspects, and Governance of Blockchain Systems.
 3. Fundamentals of Blockchain and Distributed Ledger Technology.
 4. Blockchain Business Management and Planning.
 5. Blockchain Security and Digital Identity.
 6. Blockchain System Architecture and Consensus Protocols.
 7. Blockchain Platforms.
 8. Marketing and Customer Support.
 9. Applied Cryptography.
 10. Smart Contracts.
 11. Developing Use Cases: From Ideas To Service.
 12. Game Theory In Blockchains.

 

 3.3.2 Modules Structure
 
 Every module must include the following:
 

● 4 LECTURES:
○ 80-120 slides (20-30 slides per lecture).
○ 20-30 pages of slide notes (5-6 pages of slide notes per lecture).

A lecture is a formal talk about a specific subject given to a group of students
that will be summarised in 20-30 slides. Each lecture will have a topic related
to the blockchain and will be self-contained, the set of 4 lectures will form a CV
module. The modules will form part of an itinerary but can also be used
independently according to the needs of the educational centre that uses it.

13

D5.2.1_CHAISE curriculum structure



The slides notes per lecture is a document that has to include the description
of all the topics and contents described in the slides together with some
teaching tips and give some advice to adapt the lecture from EQF5 to EQF6.
This advice will be given by some new topics proposals to include in the
lectures, see the following example:

FIGURE 5 -ADAPTION TO EQF6

Also, it can be useful to use the slides notes to transcript the video lecture,
which will be introduced below, with the extra information needed to
understand the topic from the point of view of the student.

● 4 VIDEOS:
○ 1 video per lecture.

A video will contain a taught lecture with the whole information needed by the
student to understand and apply the lecture contents.

● 4 PRACTICAL EXERCISE:
○ 1 practical exercise per lecture.

A practical exercise is a guided practice about a specific lecture topic.

● 4 CASE STUDIES:
○ 1 case study per lecture.

A case study is a real scenario where a lecture and practical exercise can be
applied and understood better.

● 20 QUESTIONS/ANSWERS:
○ 5 questions/answers per lecture.

A question/answer exercise is a self appraisal activity where the student will
be able to check if the content explained in the lecture is correctly studied.

14

D5.2.1_CHAISE curriculum structure



● MULTIPLE CHOICE QUESTIONS:
○ 10 multiple choice questions per lecture.

A multiple choice question is a performance module procedure to evaluate the
students knowledge and understanding of the topics.

3.3.3 Modules Content

In this section, there are the lectures of each module described and the associated
partner that will develop them:

1. INTRODUCTION TO BLOCKCHAIN TECHNOLOGY
Lecture 1.1: UT Introduction to Blockchain Technology
Lecture 1.2: UT Blockchain History and Future

2. REGULATION, LEGAL ASPECTS, AND GOVERNANCE OF BLOCKCHAIN
SYSTEMS

Lecture 2.1: UCBL Blockchain basics to set the regulation and governance
context and requirements

Lecture 2.2: UCBL Governance and regulation background
Lecture 2.3: UCBL Blockchain ecosystem
Lecture 2.4: UCBL Regulation strategy
Lecture 2.5: UCBL Blockchain governance
Lecture 2.6: UCBL Blockchain as a regulation mean for GDPR

3. FUNDAMENTALS OF BLOCKCHAIN AND DISTRIBUTED LEDGER
TECHNOLOGY

Lecture 3.1: UL Information and communications systems for decentralised
solutions - Part 1

Lecture 3.2: UL Information and communications systems for decentralised
solutions - Part 2

Lecture 3.3: UT Blockchain components and characteristics

Lecture 3.4: UT Distributed information systems and their information security
management principles

15

D5.2.1_CHAISE curriculum structure



4. BLOCKCHAIN BUSINESS MANAGEMENT AND PLANNING

Lecture 4.1: DHBW The Blockchain Sector - An industry overview of Blockchain
use cases and applications and scenarios (good practices)

Lecture 4.2: DHBW Applied Digital Ethics & Technology Assessment for
Blockchain

Lecture 4.3: DHBW Fundamentals of business management methods (applied to
Blockchain use cases) - Part 1

Lecture 4.4: DHBW Fundamentals of business management methods (applied to
Blockchain use cases) - Part 2

5. BLOCKCHAIN SECURITY AND DIGITAL IDENTITY
Lecture 5.1: UL Blockchain Honeypots
Lecture 5.2: UL Smart contract security
Lecture 5.3: UT Security risks analysis of blockchain-based applications

Lecture 5.4: UT Identity management and access control models of
blockchain-based applications

6. BLOCKCHAIN SYSTEM ARCHITECTURE AND CONSENSUS PROTOCOLS
Lecture 6.1: IOTA Basics in blockchain system architecture - Part 1
Lecture 6.2: IOTA Basics in blockchain system architecture - Part 2
Lecture 6.3: IOTA Different consensus protocols
Lecture 6.4: IOTA DLT examples

7. BLOCKCHAIN PLATFORMS
Lecture 7.1 UL Overview of platform characteristics
Lecture 7.2 UL Performance and Scaling
Lecture 7.3 UL Ethereum platform and ecosystem
Lecture 7.4 IOTA Comparison of selected platforms: IOTA, Hyperledger, others.

8. MARKETING AND CUSTOMER SUPPORT
Lecture 8.1 DHBW Use of Blockchain in Marketing
Lecture 8.2 DHBW Marketing for Blockchain (applied to Blockchain use cases)
Lecture 8.3 DHBW Marketing and Customer Support - Part 1
Lecture 8.4 DHBW Marketing and Customer Support - Part 2

16

D5.2.1_CHAISE curriculum structure



9. APPLIED CRYPTOGRAPHY
Lecture 9.1 IOTA Cryptographic paradigms
Lecture 9.2 UPC Hash concept
Lecture 9.3 UPC Hashes in blockchain
Lecture 9.4 IOTA Zero knowledge and blockchain

10. SMART CONTRACTS
Lecture 10.1 UPC Building simple smart contracts
Lecture 10.2 UCBL Interacting with the blockchain through smart contracts
Lecture 10.3 UCBL Building more advanced smart contracts
Lecture 10.4 UPC Tokenizing assets with blockchain

11. DEVELOPING USE CASES: FROM IDEAS TO SERVICE
Lecture 11.1 UT Business Model for Blockchain Use Case
Lecture 11.2 UT Blockchain Use Case Redesign
Lecture 11.3 UT Blockchain Use Case MVP
Lecture 11.4 UT Blockchain Use Case Roadmap

12. GAME THEORY IN BLOCKCHAINS
Lecture 12.1 UPC Basic remote purchase
Lecture 12.2 UPC Extended remote purchase
Lecture 12.3 UPC Game theory approach for fees
Lecture 12.4 UPC Game theory behind Proof of Stake (PoS)

TABLE 1- MODULES CONTENT

3.3.4 Lecture Example
We have prepared a Lecture Example to facilitate the task T5.3.
The lecture example is shown in the Annex of this document.

 
 
 

17

D5.2.1_CHAISE curriculum structure



 
 3.4 CV Training and Teaching Methodology

3.4.1 Methodology

The section contains a description of the usage of the Bloom Taxonomy, how the
lectures have been developed and finally how the modules can be used together or
individually.

The Bloom Taxonomy allows cognitive processes to be hierarchized at different
levels and serves to facilitate evaluation tasks with verbs that can be associated with
each level and can be used to specify learning objectives:

FIGURE 6 - BLOOM TAXONOMY

This taxonomy applied in the CHAISE CV helped to set the European Qualification
Level in the 5th level as fixed as a project requirement, so following this method the
CV have been divided into several modules which they main objectives are to give
the students a comprehensive, specialised and theoretical knowledge within the field
of blockchain technologies to obtain a range of cognitive and practical skills and
required to develop creative blockchain solutions.

The modules form the CHAISE CV and can be taught as a complete course, by
paths of learning, as presented in section 3.1.2 or individually to support other
courses.

18

D5.2.1_CHAISE curriculum structure



3.4.2. EQF5 Level Justification and challenges

The coverage of National Qualification Frameworks (NQFs) with European Qualification
Framework (EQF) and the learning outcomes-based approach has been expanded in recent
years. According to CEDEFOP (2020), the post-pandemic landscape in Europe will be
confronted with a number of challenges that will affect VET. They are related to:

● The adoption of emerging technologies and new forms of work organisation.
● Political challenges and sustainable development.
● Structural trends and economic downturn (job losses and decline in European

economy).

The most important element of compatibility and comparability of qualifications in the EU is
the learning outcomes approach. Learning outcomes define and describe qualifications in
terms of what people are expected to know and are able to understand after completion of a
VET programme (CEDEFOP, 2019). In the CHAISE curriculum that addresses EQF level 5,
the defined learning outcomes will help explore the similarities and differences in the content
of other programmes at national level.

In terms of EQF two challenges can be identified:

1. The development of national frameworks has been driven by the education sector,
whereas businesses have been reluctant to embrace them.

2. The participating countries in the EQF have not agreed on a common procedure for
exchanging information.

3. ECVET compatibility with your national qualification framework:

CEDEFOP has created a common guide on the necessary conditions for ECVET
implementation. It can be found here: https://www.cedefop.europa.eu/files/4113_en.pdf

PROPOSALS TO FACILITATE THE PROCESS OF ADAPTING THE CV

The process of adapting a curriculum in a national context is related to the extent to which
national systems are influenced by international standards and market trends. The national
VET systems cannot exist in isolation from educational and technological developments at
international level. The challenge that arises is how to balance the international requirements

19

D5.2.1_CHAISE curriculum structure

https://www.cedefop.europa.eu/files/4113_en.pdf


with national needs. The facilitation of alignment between national and European level is
through the continuous adaptation of national VET standards, programmes and certificates to
take into consideration external requirements and needs (CEDEFOP, 2020).

So far, the referencing between NQF and EQF has been achieved by 36 countries
(CEDEFOP, 2019). In terms of CHAISE it includes all participating countries except for Spain.
Apart from the learning outcomes approach, the comparison among qualifications across
Europe can be done through existing reference EU tools, such as ESCO. Another way is the
involvement of stakeholders from NQF in the skills development phase. Another suggestion
towards alignment is to take into consideration the new Skills agenda, launched on 1 July
2020 by the European Commission. The Skills agenda is referring to skills intelligence and
how European education providers can contribute to green and digital transition.

Lastly, another way to ensure comparability between EQF and NQF is the use of level
descriptors that indicate the location of a particular qualification. Level descriptors can be
seen as the most generic and abstract articulation of learning outcomes.This enables
learners and education providers to position a qualification in relation to other qualifications
(Bjørnåvold & Rusu, 2018). The descriptors should (Bjørnåvold & Rusu, 2018, p. 15) :

“a) be sufficiently general to accommodate different parts of education and training
systems;
(b) be sufficiently detailed and multifaceted to capture the institutional complexities,
priorities and stakeholder interests of the national qualification system;
(c) capture domains and subdomains of learning (horizontal dimension);
(d) be able to reflect and capture how knowledge, skills and competences increase in
breadth, depth and complexity when moving from lower to higher levels (vertical
dimension);
(e) act as a reference point for international comparison.”

A list of level descriptors in national qualifications frameworks (NQFs) in EU member states
can be found here https://www.cedefop.europa.eu/files/5566_en.pdf (starting from page 58).

Countries

In Germany,advanced vocational qualifications at tertiary level are nationally recognised
vocational qualifications at EQF levels 5 to 7 (CEDEFOP, 2020).
More specifically:

(a) professional specialist (Geprüfte Berufsspezialist) (EQF level 5, ISCED level 554);
(b) bachelor professional: master craftsperson, specialist (EQF level 6, ISCED level
554, 665);
(c) master professional: management and expert (EQF level 7)

20

D5.2.1_CHAISE curriculum structure

https://ec.europa.eu/social/main.jsp?catId=1223
https://www.cedefop.europa.eu/files/5566_en.pdf


The adaptation between EQF5 and EQF6 in Germany has taken place through a legislation
in January 2020 that reinforces parity of esteem between academic studies and higher VET
by legally assigning to them the same NQF levels (CEDEFOP, 2019). The title Meister is now
legally equivalent to professional bachelor.

 
 3.5 CV Performance

The performance indexes will be completed with continuous evaluation per module.
Continuous evaluation is a process that must be planned, related to the objectives,
competencies and established criteria. These aspects must be clearly described so
that the student knows how he will be evaluated, having the control of their learning
and their qualification, in the same way, in this process it is necessary to make use of
various valid and reliable evaluation instruments that manage to measure in a more
precise way what they are trying to know.

From the perspective of a continuous evaluation, the main points to be performanced
by the CV teachers will be:

● 5 Questions/answers per module.
● Multiple-choice questions.
● Case studies.

The teacher will be autonomous to define each the different weights of evaluation per
the above points and also include to the evaluation various aspects as: autonomy of
the student, proactivity in the learning, teamwork capacities and others.

However, below there is a proposal of the evaluation per module:

30% - 5 Questions/answers per module.
30% - Multiple-choice questions.
40% - Autonomy, proactivity, teamwork in the case studies.

Finally, the performance of the CV structure will be the average mark from the whole
modules.

Apart from the students' evaluation, we think that it is important to include a method
to analyse the performance of the CV from the students' experience point of view.

21

D5.2.1_CHAISE curriculum structure



Our proposal is to include an anonymous survey at the end of every module to
evaluate the students' level of satisfaction about the content of the lecture (slides,
video, practice, use case and questions).

The main objective of carrying out this CV evaluation process is to improve its
content and adapt it to the education model closest to each country of
implementation, as explained in section 4 of this document.
 
 3.6 CV Hours Structure

In the following table the different modules are listed with their respective hours of
teaching and practice. The hours that appear in the table correspond to the number
of hours that the student has to dedicate to properly understand and assume the
concepts of each module.

Module ECVET Teaching h Practice h Lecture No.

1 Introduction to
blockchain technology 5 50 20 2

2
Regulation, legal

aspects and governance
of blockchain systems

15 150 60 6

3

Fundamentals of
blockchain and

distributed ledger
technology

10 100 40 4

4
Blockchain business

management and
planning

10 100 40 4

5 Blockchain security and
digital identity 10 100 40 4

6
Blockchain system
architecture and

consensus protocols
10 100 40 4

7 Blockchain platforms 10 100 40 4

8 Marketing and customer
support 10 100 40 4

9 Applied cryptography 10 100 40 4

10 Smart contracts 10 100 40 4

11 Doveloping use cases:
from ideas to service 10 100 40 4

12 Game theory in
blockchains 10 100 40 4

22

D5.2.1_CHAISE curriculum structure



TOTAL 120 1200 480 48

TABLE 2 - HOURS STRUCTURE

 Below you can find a distribution of the hours per lecture, divided between Teaching
and PRactice and the different activities that the student can do and the hours that
must dedicate to properly follow the course and understand the lectures modules:

TEACHING

● Lecture Slides: 10 hours
Participate in the class, revise the slides as needed to understand the topic,
identify and solve doubts with the teacher and take notes or summarise the
topic.

● Video lecture: 10 hours

View the video, take notes of the topic, revise the video various times and
identify doubts that can later be solved with the teacher.

● Questions: 3 hours

Read carefully the questions, prepare a draft of the answers, check the slides
and the video to ensure that the solution draft is correct and write and present
the final version.

● Multiple choice test: 2 hours

Study the lecture and evaluate how much he/she has understood the topic of
the lecture. Dedicate some time to check the answers, mainly the wrong ones.

PRACTICE

● Case study: 10h

23

D5.2.1_CHAISE curriculum structure



Execute and develop the case study proposed by the teacher as many times
as needed to understand it. Share the case study conclusions with other
students and take notes on the main points.

● Practice: 10h

Execute the practice proposed by the teacher, minimally twice, the first time
with the class notes and another one alone.

The proposal of the specific hours per module can be summarised in three groups:

MODULE 1

● Lectures – 8 h
● Practical exercises – 8 h
● Case studies – 8 h
● 10 questions/answers – 4 h
● 20 multiple choice questions – 4 h
● Self-study – 18 h
● Review of lecture material using slides and videos
● Self-preparation for final test

MODULE 2

● Lectures – 24
● Practical exercises – 24 h
● Case studies – 24 h
● 60 questions/answers – 8 h
● 60 multiple choice questions – 8 h
● Self-study – 62 h
● Review of lecture material using slides and videos
● Self-preparation for final test

MODULE 3 - 12

● Lectures – 16
● Practical exercises – 16 h
● Case studies – 16 h
● 20 questions/answers – 4 h

24

D5.2.1_CHAISE curriculum structure



● 40 multiple choice questions – 4 h
● Self-study – 44 h
● Review of lecture material using slides and videos
● Self-preparation for final test

 
 4. QA Scheme

4.1 Introduction

The QA scheme aims at securing the continuous improvement and assessment of
the Joint Curriculum and assure its alignment and responsiveness to evolving labour
market developments and skills needs. The purpose of this chapter is to facilitate
curricula adaptation responding to changing and emerging labour market needs and
educational policy shifts as a process of wider consultation with all relevant
stakeholders.

Quality enhancement is the sum of many methods of institutional development,
ranging from competitive hiring procedures, creating appropriate funding
opportunities, to facilitating communication between disciplines and supporting
innovative initiatives through institutional incentives.

The Bologna reforms may serve as a good case in point: while quality assurance is
an important part of the Bologna reforms, the latter’s relevance to quality goes far
beyond the confines of quality assurance alone. Seen from their bright side, the
Bologna reforms could improve quality in multiple ways: through the opportunities
they offer to reflect and review curricula, to reform teaching methods (student-centred
learning, continuous assessment, flexible learning paths) and even through
strengthening horizontal communication and institutional transparency (EUA, 2008).
Systematic quality assurance of training programmes is of high importance in order
to assure relevance of qualifications within the labour market.

4.2 Involved education members

The involvement of the senior management and active participation of all members of
the education institute is a precondition to ensure the sustainability of the training

25

D5.2.1_CHAISE curriculum structure



programmes, as well as their relevance with current and future market trends. Quality
assurance of the training programme is enhanced when the involvement of different
stakeholders results into a development plan that defines areas and problems that
need to be changed.

As internal and external actors we can consider:

● Professors and trainers.
● Senior management staff.
● Quality assurance managers.
● Administrative and IT staff.
● Communication officers.
● International affairs department.
● Policy officers.
● External network of education institutes.
● Students associations.
● Chambers, unions representing market needs in a specific field.
● Ministries of education.
● European umbrella associations in HEI & VET.

According to Cedefop (2009), transparency of the processes and results is not
automatically assured for external clients and customers, which is why
self-assessment of training programmes needs to be supplemented by an active
publication and communications strategy. It has become standard in several
European countries for educational providers to publish the results of their
self-assessments on their organisationʼs website. However, an official obligation to
make the results of the self-assessment available to customers only exists in
relatively few cases.

4.3 EU tools for quality assurance

As a backbone to ensuring long-term quality of the curriculum, four EU tools are
taken into consideration. ECVET, the European Credit System in Vocational
Education and Training, EQARF, the European Quality Assurance Reference
Framework, the European Qualifications Framework, EQF and EQAVET, the

26

D5.2.1_CHAISE curriculum structure



European Quality Assurance Reference Framework for Vocational Education and
Training.

According to official glossary (CEDEFOP, 2011, p. 59) ECVET is the: “Technical
framework for transfer, recognition and, where appropriate, accumulation of
individualsʼ learning outcomes to achieve a qualification. ECVET tools and
methodology comprise the description of qualifications in units of learning outcomes
with associated points, a transfer and accumulation process and complementary
documents such as learning agreements, transcripts of records and ECVET usersʼ
guides”.

EQARF was adopted by the European Parliament and the Council in June 2009 as a
Recommendation on the establishment of a European Quality Assurance Reference
Framework for Vocational Education and Training. More specifically: “it describes the
cycle of the quality of VET in four phases (planning, implementation, evaluation and
re-examination/revision), and proposes, for each of them, a selection of criteria,
descriptors and indicators to improve the management of quality both at VETsystem
and VET-providers levels”. (European Commission, 2012, p. 3).

EQARF can be applied at both the system and VET provider levels and can therefore
be used to assess the effectiveness of VET. It gives a particular emphasis to the
improvement and evaluation of the ‘outputs’ and ‘outcomes’ of VET in terms of
increasing employability, improving the match between demand and supply, and
promoting better access to lifelong training, in particular for disadvantaged people.

EQF is defined as a: “Reference tool for describing and comparing qualification levels
in qualifications systems developed at national, international or sectoral levels”.
(CEDEFOP, 2011, p. 65).

EQAVET is defined as the: “Reference framework to help EU Member States and
participating countries develop, improve, guide and assess the quality of their own
vocational education and training systems. The methodology proposed by the
framework is based on:

● a cycle consisting of four phases (planning, implementation, assessment and
review) described for VET providers/systems.

● quality criteria and indicative descriptors for each phase of the cycle.

27

D5.2.1_CHAISE curriculum structure



● common indicators for assessing targets, methods, procedures and training
results – some indicators are to be based on statistical data, others are of a
qualitative nature”. (CEDEFOP, 2011, p. 67-68).

All above frameworks are part of a shift toward assessing learning outcomes (i.e.
what the learner knows and can do at the end of the learning process) rather than
inputs.

4.4 The CACEP Quality Framework

The QACEP Quality Framework is a reference guide for Higher Education Institutions
designed to assist them in the management of the quality of their continuing
education programmes, by fostering the development of a continuous improvement.
The goal is to assist in the development of more efficient ways and means for
delivering better outputs with the available inputs.

The target groups of the QACEP Quality Framework are continuing education
programme managers,coordinators, teachers/academics, governing bodies and
managers of higher education institutions.

The CACEP Quality Framework was developed as part of a co-funded project and
can be also relevant in continuing education programmes.

It is built on the Plan-Do-Check-Act (PDCA) cycle idea: a problem solving process to
facilitate continuous improvement in organizations. The PDCA concept emphasises
that improvement must start with careful planning, lead to effective action, go through
monitoring and improvement and re-visit the planning stage again resulting in an
improved activity.

Therefore, the Framework is organised into four parts, corresponding to the following
phases:

● Planning and design.
● Implementation and delivery.
● Programme monitoring.
● Programme improvement.

For each phase the Framework identifies key elements and features. The key
elements presented in the planning and design phase must also be considered for all
other phases. The QACEP Comparative Analysis Report can be found here:
www.qacep.eu.

28

D5.2.1_CHAISE curriculum structure

http://www.qacep.eu
http://www.qacep.eu


4.5 Curriculum quality assurance & periodic review

In a curriculum quality assurance framework, a review mechanism is an embedded
element, which key objectives are:

● To evaluate program curriculum, effectiveness and sustainability.
● To provide an opportunity for planning for the future.

Periodic review and curriculum renewal, mainly seek to address the following
questions:

● Is the demand (both learner and employment) sustainable?
● Is the level of satisfaction in meeting learner and workplace needs

acceptable?
● Is the programme effectively responding to external needs and challenges?
● Are resources (learning, human and physical) necessary for the program

available?
● Is the programme congruent with the strategic direction of the education and

training provider?
● Are learners learning what they are intend to learn?

The quality assurance of training programmes is crucial in considering the specific
objectives of these programmes, the specific target groups, the variety of
stakeholders involved, and their relationship with the labour market and society.From
the beginning of identifying the strategic objectives and management, the education
institute should take into consideration the questions:

● To what extent is there a strategy on how to interact and communicate with
stakeholders on the local, national and international level?

● Which stakeholders are structurally involved in the quality management?

29

D5.2.1_CHAISE curriculum structure



● To what extent are the needs of stakeholders (labour market, professional
bodies, etc.) assessed?

● To what extent are the procedure(s) for admission clearly communicated to the
stakeholders?

● To what extent are the defined learning outcomes in line with the needs of
target groups and stakeholders (including labour market)?

● To what extent are the content of the programme and the expected learning
outcomes well described to the stakeholders?

● To what extent are the different stakeholders involved in programme
monitoring?

● To what extent are different stakeholders consulted on the results of
monitoring (teachers, learners, companies etc.)?

In any quality assurance system one of the key features is the improvement that is
developed and implemented following the monitoring of the programme including the
ascertaining of views of all stakeholders on the delivery and outcomes of the
programme. Key to delivering an improvement and enhancement of programmes is
accurate data and evidence on which to base any changes to be made. Thus, it is
essential that the monitoring phase on the delivery is conducted in a timely and
thorough fashion.

Self-reflection together with evaluation of the strengths and weaknesses of all
aspects of the programme, conducted in an evidence-based manner, will ensure the
alignment of the needs of all stakeholders (learners, labour market, teachers,
institutions, etc.) and result in delivery of an enhanced programme.

Crucial aspects here include:

● To what extent are the quality improvement system and criteria transparent to
all stakeholders?

● To what extent are quality improvement actions discussed with and
communicated to internal and external stakeholders?

● Which stakeholders (incl. participants) are being questioned in the evaluation?

The ultimate aim of any quality assurance exercise must be the improvement and
enhancement of a programme/activity and it is important that all stakeholders –
students, staff and external stakeholders – are facilitated in their engagement with
the process. Funding agencies, including government and industry, where applicable,
also play an important role in the quality assurance and have an interest in the
outcomes and developments.

30

D5.2.1_CHAISE curriculum structure



4.6 Online learning environment: aspects of Human Computer Interaction

Information and Communication Technologies (ICTs) have played a key role in
supporting the continuation of teaching and learning at university-level education
(HEIs)/VET during the COVID-19 pandemic. Based on a recent study (OECD, 2020),
the unprecedented pandemic has activated measures at global scale that disrupted
the normal functioning of universities. The responsible departments at HEIs/VETs
had to create effective synergies with the IT departments and teaching staff to put in
place alternative methods for students.

The challenge was dependent on previous knowledge of the education institute in
this field, as well as relevant support from government, enabling a smoother or
harder transition to the fully digitalised learning environment. According to
Scheuermann & Pedró (2009), there is an absence of broader set of
internationally comparable indicators. These indicators could monitor progress in
ICT uptake and unveil important information about use. Since frequency and purpose
cannot be easily measured, comparable data and practices remain at national level,
making it difficult to put in place tools for benchmarking policies at EU-level.

In many European universities and VET providers, digital learning environment
served only to complement physical classrooms. Peer-to-peer interaction had to be
replaced by virtual rooms. Many of ICT systems are not designed to cover learners
with special needs or distraction disorders, a parameter that needs to be further
researched and taken into consideration for the future. It is also impairing the efforts
of more shy or less socialised students to interact with other peers or teachers, a
behaviour that could be identifiable at physical level. Assignments and exams have
also been affected.

In comparison to sit-down exams, ICT systems should be flexible enough to ensure
more time for students to complete them and more time for teachers to grade them.

31

D5.2.1_CHAISE curriculum structure



Despite the challenges, the adoption of ICT methods provides students with the
necessary skills to integrate into society and professional life, where
technology-related competencies are an integral part of 21st century education.

4.7 Quality criteria in online learning environment

Further to the use of EU frameworks, standards and EQAVET indicators, ACQUIN
proposes complementary tools for evaluating an online learning environment. This
proposal is based on current ICT discourse and can be conducted by the
assessors/external reviewers when evaluating the platform.

According to Jakob Nielsen’s Heuristics
(https://www.nngroup.com/articles/ten-usability-heuristics/) assessors/external
reviewers will be asked to provide their input based on the following 5 Heuristics:

Heuristic 1: Visibility of system status
The system should always keep users informed about what is going on, through
appropriate feedback within a reasonable time.

Heuristic 2: Match between system and the real world
The system should speak the users' language, with words, phrases and concepts
familiar to the user, rather than system-oriented terms. Follow real-world conventions,
making information appear in a natural and logical order.

Heuristic 3: User control and freedom
Users often choose system functions by mistake and will need a clearly marked
"emergency exit" to leave the unwanted state without having to go through an
extended dialogue. Support undo and redo.

32

D5.2.1_CHAISE curriculum structure

https://www.nngroup.com/articles/ten-usability-heuristics/


Heuristic 7: Flexibility and efficiency of use
Accelerators — unseen by the novice user — may often speed up the interaction for
the expert user such that the system can cater to both inexperienced and
experienced users. Allow users to tailor frequent actions.

Heuristic 8. Aesthetic and minimalist design
Dialogues should not contain information which is irrelevant or rarely needed. Every
extra unit of information in a dialogue competes with the relevant units of information
and diminishes their relative visibility.

The below scale is used in the heuristic evaluation:

Severity scale
0 = I don't agree that this is a usability problem at all

1 = Cosmetic problem only: need not be fixed unless extra time is available

2 = Minor usability problem: fixing this should be given low priority

3 = Major usability problem: important to fix, so should be given high priority

4 = Usability catastrophe: imperative to fix this as soon as possible

The heuristic evaluation can be accompanied by usability research conducted by the
HEIs/VET providers in order to measure the feedback from learners and instructors
that are the end-users of the platform. This way the platform will meet high standards
of quality in terms of design, use and operability.

4.8 External assessment of training programme by QA agencies

The goal of an international certification procedure of a training programme is to
assess the programme's existing quality and recommend improvements.
Accountability and enhancement are at the core of the procedure. Peer-review

33

D5.2.1_CHAISE curriculum structure



experts evaluate and assess the programme. To guarantee impariality, the experts
scrutinize the programme against a set of criteria.

The international certification procedures in Europe should comply with the
"Standards and Guidelines for Quality Assurance in the European Higher Education
area" (ESG). The ESG standards
(https://www.enqa.eu/wp-content/uploads/2015/11/ESG_2015.pdf) define both
assessment criteria and criteria for the accreditation process. They were adopted at
the European Higher Education Area Ministerial Conference in 2015.

The basis of the procedure is the self-assessment report of the HEIs/VET providers
for the evaluation of the programme by peer experts. HEI/VET provider submits the
self-assessment report indicating the ways in which the programme complies with the
ESG standards and other EU tools (i.e. EQAVET indicators).

Within the ESG framework, the procedure may check the compliance of the
programme with national legislation, as well as national and international scientific
standards, such as ECVET and European Credit Transfer and Accumulation System
(ECTS).

According to ESG, the following ten criteria of internal quality assurance are
evaluated:

● ESG 1.1 Policy for quality assurance.
● ESG 1.2 Design and approval of programmes.
● ESG 1.3 Student-centred learning, teaching and assessment.
● ESG 1.4: Student admission, progression, recognition and accreditation.
● ESG 1.5: Teaching staff.
● ESG 1.6: Learning resources and student.
● ESG 1.7: Information management.
● ESG 1.8: Public information.
● ESG 1.9: On-going monitoring and periodic review of programmes.
● ESG 1.10: Cyclical external quality assurance.

An international certification procedure of a curriculum held by QA agencies
operating in higher education and higher VET can have the below positive effects:

● Enhance the international readability of curricular structures and the
underlying quality assurance systems than can in turn increase cooperation
and competition, mobility and institutional good practice, with quality
enhancement occurring as a natural consequence of wider and deeper
comparisons.

34

D5.2.1_CHAISE curriculum structure

https://www.enqa.eu/wp-content/uploads/2015/11/ESG_2015.pdf


● Increased mutual trust in each others ‘quality assurance systems would result
in increased trust in the quality of education provision in those systems,
thereby resulting in cross-border movement.

● Enhanced quality in teaching based on learning outcomes and
student-centered teaching, also in cases where learners choose a different
learning path such as the training offered through an Erasmus+ project.

A typical international certification procedure in ACQUIN is described in the below
table:

35

D5.2.1_CHAISE curriculum structure



TABLE 3 - INTERNATIONAL CERTIFICATION PROCEDURE: SOURCE ACQUIN GUIDELINES

Since VET has not developed specific standards for evaluation, ESG flexible
character can serve a good basis for the external review of the programme. These
standards can be used along with EQAVET indicators. Implementing EQAVET is a
challenge at both national and institutional level. The Quality Assurance methodology
proposed within EQAVET and which needs to be implemented within VET provision
at national level is based on three main aspects:

36

D5.2.1_CHAISE curriculum structure

https://www.acquin.org/wp-content/uploads/2021/02/Guideline_for_International_Certification_finvc.pdf


● a quality cycle consisting of four phases (planning, implementation, evaluation
and review) described for VET providers/ systems.

● quality criteria and indicative descriptors which feed into each phase of the
cycle to direct providers on how to implement the quality cycle.

● and common indicators (quantitative and qualitative) for assessing targets,
methods, procedures and training results at both system and provider level.

Once changes are made, data will provide information on their impact and help VET
providers to sustain the quality of their own efforts.

Here are some tips which might be useful when initiating the monitoring of quality
assurance approach:

1. Build self-monitoring into the implementation of quality assurance
management processes from the beginning.

2. Negotiate between stakeholders to decide ‘what’ to self-monitor and keep
them informed of the state of the process and the results of the exercise.

3. Ensure that EQAVET indicators are clearly understood and commonly
interpreted by all stakeholders.

4. Identify a data collection system/procedure for inputs, outputs and outcomes
as encapsulated in the EQAVET indicators.

5. Record information in sufficient detail to provide for improvement actions ,
future evaluations and to illustrate accountability.

6. Check that results are directly linked to the stated objectives and to other
factors which may have a key influence on the process.

7. The process will only be complete when evidence has been put to use, e.g. in
planning for improvement and in reporting on quality.

4.9 Concluding remarks

37

D5.2.1_CHAISE curriculum structure

https://www.eqavet.eu/eu-quality-assurance/glossary/input-indicators
https://www.eqavet.eu/eu-quality-assurance/glossary/output-indicator
https://www.eqavet.eu/eu-quality-assurance/glossary/outcome-indicator
https://www.eqavet.eu/eu-quality-assurance/glossary/accountability
https://www.eqavet.eu/eu-quality-assurance/glossary/evidence


Based on the above, external reviews in education institutes (either through
accreditation procedures or institutional reviews) presuppose a sufficient degree of
institutional autonomy in order recommendations and intended action plans to be
able to be realized.

Among the success factors of constructive development in quality, time and
willingness of academics, institutional leadership and quality assurance departments
are worth mentioning. The below Annexes are integral part of the current guidelines
and provide further input, checklists and templates.

Another success factor consists in the frequency of the quality assurance cycle. Too
frequent reviews may result in evaluation fatigue and demotivation to engage in
meaningful dialogue. The choice of external assessors/experts is also vital in order to
cover different disciplinary areas to allow for enlarged horizons.

References

38

D5.2.1_CHAISE curriculum structure



EUA. (2008). Implementing and using quality assurance: Strategy and Practice. A
selection of papers from the 2nd European Quality Assurance Forum. Available at:
https://eua.eu/component/publications/publications/113-eqaf-paper/466-implementing
-and-using-quality-assurance-strategy-and-practice.html

European Commission Directorate-General for Education, Youth, Sport and Culture.
(2012). EQARF, European quality assurance reference framework for vocational
education and training. Publications Office.DOI: doi/10.2766/49917

CEDEFOP. (2020). Vocational Education and Training in Europe, 1995–2035:
Scenarios for European Vocational Education and Training in the 21st Century.

CEDEFOP. (2015). Ensuring the quality of certification in vocational education and
training. Luxembourg: Publications Office. Cedefop research paper; No 51.
http://dx.doi.org/10.2801/25991.

CEDEFOP. (2013). Renewing VET provision Understanding feedback mechanisms
between initial VET and the labour market. Luxembourg: Publications Office. 2013 –
VI, 166 p https://www.cedefop.europa.eu/files/5537_en.pdf.

CEDEFOP. (2011). Glossary: quality in education and training.
Luxembourg:Publications Office. http://www.cedefop.europa.eu/files/4106_en.pdf

CEDEFOP. (2009). Accreditation and quality assurance in vocational education and
training. Luxembourg: Publications Office of the European Union.
https://www.cedefop.europa.eu/files/3061_en.pdf

European Commission Directorate-General for Education and Culture. (2005).
Fundamentals of a “common quality assurance framework” (CQAF) for VET in
Europe, European Commission, Directorate General for Education and Culture,
Brussels. (Accessed 10 June 2022). Available at:
http://www.bmukk.gv.at/medienpool/18122/fundamentals_of_a_cqaf_for_v.pdf.

Scheuermann, F., Pedró, F. (2009). Assessing the effects of ICT in education
Indicators, criteria and benchmarks for international comparisons.

OECD. (2020). Supporting the continuation of teaching and learning during the
COVID-19 Pandemic. Available at:

39

D5.2.1_CHAISE curriculum structure

https://eua.eu/component/publications/publications/113-eqaf-paper/466-implementing-and-using-quality-assurance-strategy-and-practice.html
https://eua.eu/component/publications/publications/113-eqaf-paper/466-implementing-and-using-quality-assurance-strategy-and-practice.html
https://eua.eu/component/publications/publications/113-eqaf-paper/466-implementing-and-using-quality-assurance-strategy-and-practice.html
http://dx.doi.org/10.2801/25991
http://dx.doi.org/10.2801/25991
https://www.cedefop.europa.eu/files/5537_en.pdf
http://www.cedefop.europa.eu/files/4106_en.pdf
https://www.cedefop.europa.eu/files/3061_en.pdf
https://www.cedefop.europa.eu/files/3061_en.pdf
http://www.bmukk.gv.at/medienpool/18122/fundamentals_of_a_cqaf_for_v.pdf
http://www.bmukk.gv.at/medienpool/18122/fundamentals_of_a_cqaf_for_v.pdf
https://www.oecd.org/education/Supporting-the-continuation-ofteaching-and-learning-during-the-COVID-19-pandemic.pdf


https://www.oecd.org/education/Supporting-the-continuation-ofteaching-and-learning-
during-the-COVID-19-pandemic.pdf

Grm, S. P., Bjørnåvold, J., & Rusu, A. (2018). Analysis and Overview of NQF Level
Descriptors in European Countries. Cedefop Research Paper. No 66.
Cedefop-European Centre for the Development of Vocational Training.

Cedefop. (2020). Vocational Education and Training in Europe, 1995–2035:
Scenarios for European Vocational Education and Training in the 21st Century.

European Centre for the Development of Vocational Training (Cedefop) European
Training Foundation (ETF). (2020). The importance of being vocational: challenges
and opportunities for VET in the next decade: Cedefop and ETF discussion paper.

European Centre for the Development of Vocational Training (Cedefop). (2019).
Briefing note - NQF developments 2019. Available at:
https://www.cedefop.europa.eu/en/publications/9150#group-details (Accessed June
2022).

40

D5.2.1_CHAISE curriculum structure

https://www.oecd.org/education/Supporting-the-continuation-ofteaching-and-learning-during-the-COVID-19-pandemic.pdf
https://www.oecd.org/education/Supporting-the-continuation-ofteaching-and-learning-during-the-COVID-19-pandemic.pdf
https://www.cedefop.europa.eu/en/publications/9150%23group-details
https://www.cedefop.europa.eu/en/publications/9150%23group-details


ANNEX

41

D5.2.1_CHAISE curriculum structure



Module 10: Smart Contracts

Lecture 1: Simple Smart Contracts



Table of Contents

Smart Contract Concept

Writing Smart Contracts



10. SMART CONTRACTS

Employ programming language(s) to develop smart contracts and digital currency.

Knowledge Skills Responsibility and Autonomy
Knows / Aware of:
• Frontend and Backend

development.
• User experience (UX) design

principles.
• Smart contract design and

implementation.

Able to: 
• LO10.1: Apply good practices

for developing smart contracts
and describe the advantage of
blockchain technology.

Capable to:
• Relate the frontend and

backend components of the
blockchain-based application.

• Integrate a creative environment
to support observation, ideation,
reflection, building and
rebuilding of the blockchain-based
application prototypes. 



Learning Objectives

Smart Contract Concept

Blockchain Main Features
Anatomy of a Smart Contract

Simple Smart Contract

Frontend and Backend Smart 
Contract

Writing Smart Contracts

Deploy a Smart Contract
Functions and examples



Smart Contract Concept



● Blockchains are ”super systems” to manage state:
○ Most replicated systems in the world (highest possible availability).
○ Tamper-proof (immutable).
○ Public blockchains are the most transparent systems in the world.

● As a result several things are unfeasible in blockchain:
○ Denial of Service (DoS) attacks.
○ Censorship.

Blockchain Main Features



● Blockchains are not ”just” distributed data repositories, you 
can also define logic around state:
○ Which transactions are accepted or which are not.
○ How a transaction modifies the state.

● Use state for what?
○ State machine of a cryptocurrency.
○ Other applications: use blockchain as a platform for building applications, that 

is, program our state machine like a computer.
○ This was the vision of Ethereum back in 2013.

Use State for What?



○ A transaction can ”install” (deploy) code in the global computer.

○ This code is the famous smart contract (AKA chaincode).

○ We can execute functions of deployed smart contracts with other 
transactions.

A Blockchain as a “Global Computer”



Users can do more sophisticated things with smart 
contracts.

Note. Contract might be a ”wrong” name because by default smart contracts 
do not have any legal validity (they are just code).

Smart Contracts I



Example:

Another example: define how our taxes should be invested.

Smart Contracts II



Code (rules) is immutable
and provides functions to
mutate the contract’s state.

Anatomy of a Smart Contract



Example of our Smart Contract Code



Blockchain Layers



Writing Smart Contracts



Basic Ethereum Remix
○ Remix can execute a local Ethereum 

virtual Machine (EVM) in the browser.

○ This is the easiest way of having the 
experience of creating a smart 
contract.

1. Write, compile, deploy and debug your smart contracts.
2. Interact with smart contracts: transactions and queries.
3. You get dummy accounts with Ether to create transactions.
4. Estimate the costs of each transaction... and much more...

https://remix.ethereum.org



Simple Smart Contract I

● The storage of the smart 
contract will store a positive 
integer.

● We have two functions to get 
and set the stored value.



Simple Smart Contract II

○ Pragmas are instructions to compilers about how to treat source code.
○ From the same source code we can create multiple instances (each will 

be deployed in a different address).
○ If you do any modification you have to re-deploy a new contract.



Transactions and Calls (Queries)



View Functions

○ View functions do not require a transaction only a call.
○ View functions can return immediately (transactions need to be ordered 

by consensus).



Deploy a Smart Contract



Call an Existing Smart Contract



Transact with an Existing Smart 
Contract



Public State Variables

○ We can get rid of the getter function making the state variable public.
○ The language (solidity) creates a getter function automatically when 

compiled.
○ If deployed in the public network, anyone can send a transaction calling 

setValue() and change the state of this contract.



● Blockchain Main Features
● Smart Contracts Concept
● Anatomy of a Smart Contract
● Basic Ethereum Remix
● Simple Smart Contract
● Deploy a Smart Contract

Summary







TABLE OF CONTENTS

1 INTRODUCTORY PARAGRAPH 3

2 LECTURE NOTES 4

3 PRACTICAL EXERCISES 5
SIMPLE STORAGE CONTRACT 5

3.1 INTRODUCTION 5
3.2 REMIX SETUP 5
3.3 PROGRAMMING THE SMART CONTRACT 6

3.3.1 SIMPLE STORAGE 6
LICENSE 6

STORAGE VARIABLE 7
3.3.2 ADVANCED STORAGE 12

CONTRACT CODE 12
MAPPING AND ADDRESS DATA TYPES 13
FINAL CONTRACT VIEW 14

4 CASE STUDY 15
ESCROW SMART CONTRACT 15

4.1 DESCRIPTION 15
4.1.1 THE DEPOSIT 15
4.1.2 THE WITHDRAW 16

4.2 IMPLEMENTATION 16

5 QUESTIONS AND ANSWERS 17
DESCRIPTION 17
QUESTION AND ANSWER NO.1 17
QUESTION AND ANSWER NO.2 17

6 MULTIPLE-CHOICE QUESTIONS 20



1 INTRODUCTORY PARAGRAPH

This document presents lecture notes, practical exercises, case studies, questions and
answers, and multiple-choice questions related to Module 10, Lecture 1.



2 LECTURE NOTES



3 PRACTICAL EXERCISES

Simple Storage Contract

3.1 Introduction
In this practice, we are going to work on the concepts about smart contracts learnt in the
theoretical part. The main purpose is to implement our first Ethereum smart contract.
We remark that we will deploy it in a local EVM, not in a public network (this will be done
in further lessons). With local EVM we mean an instance of Ethereum blockchain that
we use for test purposes and runs only with one node in our computer, and in the case
of this practice, in our browser.

To implement our first smart contracts, we will use:

● Remix: a free and open source integrated development environment (IDE) that
we can use to write, compile, and debug Solidity code in our browser.

● Solidity: an object-oriented, high-level language for implementing smart contracts
designed to target the Ethereum Virtual Machine (EVM).

The objectives of this practice are:
To implement our first smart contracts.
Learn how to use Remix.
Practice and increase our knowledge of Solidity’s syntax.

3.2 Remix Setup
First of all, we are going to open the Remix IDE to start programming our first smart
contract.
To open the remix web application, we have to open the following link from a web
browser: https://remix.ethereum.org
After opening the link in the browser, the following screen will appear:



After opening remix, we will create a new smart contract by clicking on the indicated
button:

After clicking the button, a new document will appear, and we have to write the name for
the file. In our case, we will write AdvancedStorage.sol:

Now, we have everything ready in remix to start programming our smart contract in this
file.

3.3 Programming the smart contract
First of all, we are going to code the SimpleStorage contract shown in the theoretical
part and then, expand it to a more advanced one.

3.3.1 Simple Storage
In this smart contract, we want to allow anybody to set (change) the value of a storage
variable, which means, to modify the blockchain state. Also, everyone will be able to
execute a query to view the current value of the variable.

License
The first thing we need to do is to add the license for the smart contract. This part is not



required, but it is highly recommended and if you don’t add it, Remix will throw you a
warning.
The license is always specified on the first line of a smart contract:

In this case, we are specifying the MIT License, which is a permissive free software
license originating at the Massachusetts Institute of Technology (MIT) in the late 1980s.

Compiler version
Then we have to add the compiler version of that we want to use:

The compiler transforms the Solidity code into low level instructions called OPCodes
that can be interpreted and executed by the Ethereum Virtual Machine (EVM). In this
case, we are specifying that we can use any compiler with a version greater or equal
than 0.8.0.

Contract scope
Now, we can define our smart contract by adding the following:

The contract’s logic will be defined inside contract scope (between the {}).

Storage variable
Storage means that the value of this variable is permanently stored on-chain (forms part
of the blockchain’s state). Variables declared inside the contract scope but outside of
any function are storage by default. uint256 type refers to a 256-bit unsigned integer
numeric type. Also, In Solidity there are more types (booleans, strings, bytes, etc).

To declare a uint256 storage variable called storedValue add the following code:

With the use of the public keyword, during the compilation stage, the Solidity compiler
will automatically define a public view function to query the variable value (Getter). With
this getter, everyone can query its value.

Function definition
This function replaces the value of storedValue with the value received as argument.
Notice that the function is declared as public, which means that it can be called



externally (from an external account) and internally (from another function of the smart
contract). This kind of parameter is called visibility modifier.

Compiling the smart contract
Now, in order to be able to deploy our smart contract, we must compile it first. To go to
compilation screen we have to click in the icon indicated below:

And then, we should click Compile. After that, if the compilation has been successful,
we will already be able to deploy the contract. Otherwise the compiler will throw errors.

Deploying the smart contract



Finally, we are going to deploy the smart contract in a local network running inside
Remix. By clicking in the button indicated below we are going to move to ”Deploy & Run
transactions screen” tab:

In this menu, we have many configuration parameters for the deployment and contract
debugging.
With the ”ENVIRONMENT” parameter set to London the contract is going to be
deployed in local EVM.
Now we have to select the already compiled contract in the ”CONTRACT” dropdown
menu, and click on Deploy.



After this, the smart contract should be already deployed and it will appear a drop-down
interaction menu. Note that the deployed contract has been assigned to a specific
ethereum address.

Interacting with the smart contract
Now with the smart contract already deployed, we can interact with it by using the user
interface generated by remix.

This user interface should look like:



In the GUI we have the following buttons:
● The setStoredValue button is used to call the setStoredValue function. The

orange colour of this button means that we have to send a call transaction to
execute it and pay the corresponding fees. This is because the execution of this
function, in a real situation, might change the blockchain state in all nodes of the
network.

● The storedValue button is used to call storedValue getter function, and will
return its value. The blue colour of this button means that it is a view function and
we do not have to pay fees to call it because this function doesn’t change the
state and only supposes a query to a single node.

Solidity variables are set to 0 by default, let’s check it by clicking on the blue button.

Now, we are going to change the value of storedValue to 12. To do that we have to call
setStoredValue and pass the value as function parameter (fill the parameter box and
click the orange button).



Remember that in order to call this function, an externally owned account has to pay the
fees, because a transaction is needed. If you look at the accounts, you will notice that
the first account now does not have 100 ethers but a little less because it paid for the
fees of the transaction.

If we query again storedValue we will see that it is 12.

3.3.2 Advanced Storage
In this section, we are going to create a new simple storage contract but with extra logic.

● The new contract should have the following characteristics:
● The initial value of storedValue has to be 5.
● Should have a unique owner address allowed to call setStoredValue and

addAccount (detailed later) functions.
● Should have an addresses list named allowedAccounts which only has

permission to call setStoredValue.

We already saw how to create, compile and deploy smart contracts so now, let’s focus
on the new logic.

Contract code
The new contract will include three storage variables, a constructor function, a function
to set the value of storedValue and a function to add accounts in allowedAccounts list.



Mapping and address data types
We will use the owner variable to store the contract owner address. Solidity has a 20
bytes length special data type to store addresses.
We will use the allowedAccounts mapping to store the list of accounts allowed by the
owner.
Note that mapping type is useful because it allows efficient search over a key-value list,
being more gas efficient than an array. In our case, the keys types are addresses and
the values types are bool.

The constructor function
A constructor in Solidity is a special function that is executed only once, when the
contract is deployed. The constructor is typically used to initialize state variables.
In our contract we will use the following constructor:

Notice that we are setting the initial value of storedValue to 5, and initial owner value to
the account address that sends the deployment transaction. msg.sender is a Solidity
global variable that contains the transaction sender address.

Require syntax

setStoredValue
In order to implement ownership functionality we are going to use Solidity’s require()
function, that is a special function which validates a boolean condition. If the condition
evaluates to false, the calling transaction will revert.

In our case, if the account that is calling the function is not the owner or an allowed
account, the transaction will revert without changing the storedValue variable.

addAccount
To add an account to the allowedAccounts list, we have to define the following function:



This function can only be called for the owner, if the account that is calling this function
is not the owner, again the transaction will revert without changing allowedAccounts list.

Final contract view
As the last step, let’s put all our code together:

Now, compile, deploy and test the contract characteristics using already described
Remix functionalities.

Extra challenges:
● Read about modifiers and use them to structure your code better

https://solidity-by-example.org/function-modifier/.
● Add, test and verify a new function to allow only the owner to remove addresses

from allowedAccounts mapping.



4 CASE STUDY

Escrow Smart Contract
One of the main uses of smart contracts is in those applications where we need to
manage value between parties and it is not possible for them to trust each other (e.g.
buying through the Internet). The immutability, high-level programmability, and built in
value management mechanics (programmable money) of some blockchains, such EVM
based ones, make them ideal for this type of applications.

In the following use case, we are going to analyse how to implement one of these
applications with a smart contract.

4.1 Description
We have two people, Alice and Bob. Alice wants to give 1 Ether to Bob and she doesn’t
want to allow Bob to spend that value until a month has passed, but she has no
guarantee that Bob will fulfill the deal.

The traditional way of solving this is to introduce an intermediary(third source of trust)
that receives the money from Alice and pays it to Bob after a certain condition has been
met, in our case, that a month has passed.

This type of service is called an escrow. An escrow is a legal concept that describes a
financial instrument whereby an asset or money in custody is held by a third party on
behalf of two other parties who are in the process of completing a transaction.

However, this solution has two problems: on the one hand, Alice and Bob probably
might have to pay a high fee for the escrow service and, on the other hand, and most
importantly, they have to trust the third party providing the service.

With a smart contract on a blockchain, there is no need for a trusted intermediary
because the rules are written into the smart contracts (money programmability) and no
one can manipulate these rules (immutability).

4.1.1 The deposit
First, Alice, who wants to give 1 Ether to Bob, has to create and deploy an instance of
an escrow smart contract where she puts the correct logic so that Bob can withdraw the
ether only after a month. Let’s explain how Alice can create this smart contract:

1. Alice writes the smart contract code, with the proper storage and functions.
2. Alice compiles and deploys the smart contract on the blockchain.
3. Alice deposits 1 Ether in the smart contract.



4.1.2 The withdraw
Finally, when a month has passed since Alice’s deposit, Bob can call a function to
withdraw his Ether. Notice that if Bob tries to call the withdraw before 1 month, the
transaction has to be reverted.

4.2 Implementation
You must implement a smart contract for this use case. We suggest you use remix IDE
to write, deploy and test your smart contract. The smart contract can be coded in
different ways, think about which would be the best to avoid malicious behaviours.

Below is shown a few tips to help you with implementation building process:
● Alice has one account and Bob another one to interact with the smart contract.
● Alice is the owner of the smart contract.
● In the constructor, you have to record in the smart contract storage the

addresses of Alice and Bob.
● The smart contract has a function called deposit() which is payable. This function

can only be successfully executed if called by Alice sending 1 Ether.
● The smart contract has a function called withdraw(). This function can only be

successfully executed if called by Bob after 1 month has passed.
● For managing time, use block.timestamp, whose format is Unix time in seconds.



5 QUESTIONS AND ANSWERS

Description
Below are five questions and answers that require some reflection.

Question and Answer No.1
Q: Create a smart contract with a addTwoIntegers function to add two integers and
store the result in a storage variable. The storage variable must be able to be queried
by anyone through an external transaction. The solution code must have only one
function declared.

A: Is not needed to declare explicitly a function to query storage variable, the use of
”public” visibility modifier along with a storage declaration forces Solidity to create a
getter during compilation.

Question and Answer No.2
Q: Explain the purpose of the payable keyword in a function declaration, and the
address(this).balance expression.

A: In Solidity, the payable keyword in a function declaration means that this function can
receive Ether when it’s executed, i.e. when the function is called the value of the calling
transaction can be different from 0.
Balance is a property of the address type and when we call it, returns the ether balance
that is holding that specific address. The ”this” expression returns the current contract’s
instance type object; we can explicitly convert to Address type using ”address(this)”
expression.
So the expression address(this).balance returns the Ether balance of the current
contract instance.



Question and Answer No.3
Q: Modify the contract coded at Question 1 so that the storage can only be updated if 1
ether is sent along with the transaction. Constrain a max value of 5 eth in the contract
balance.

A:

Question and Answer No.4
Q: Implement ownership functionality to the contract. The owner must be automatically
set to the deployer address during the deployment. Use a modifier to structure better
your code and restrict the addTowIntegers function to only accept calls from the owner.

A:

Question and Answer No.5



Q: Modify the addTwoIntegers function in order to allow everyone to call it, and if in the
call the max ether value in the contract is reached, all the funds have to be sent to the
owner address. Use a constant MAX_ETH to hold max ether value and avoid ”Magic
Numbers”.

A:



6 MULTIPLE-CHOICE QUESTIONS

Below are ten multiple-choice questions. One or multiple choices can be correct.
Correct alternatives are marked in bold.

Multiple Choice question No. 1
Q: Regarding the deployed code of an instance of a smart contract:

● Only the miners can change the deployed code.
● Deployed code is immutable.
● Deployed code is mutable.
● Only the users can change the deployed code.

Multiple Choice question No. 2
Q: Regarding the storage of a deployed instance of a smart contract:

● The storage of a deployed smart contract is immutable.
● The storage of a deployed smart contract can be muted by functions.
● We cannot control which accounts will be able to mute the storage.
● Can only be muted by the constructor function i.e. during deployment.

Multiple Choice question No. 3
Q: In the context of smart contract code, the expression address(this):

● Changes the address of current to contract’s instance to ”this” variable.
● Returns current contract’s instance type object.
● Returns the address of the current contract’s instance.
● Returns the ether balance of ”this” address.

Multiple Choice question No. 4
Q: Regarding Ethereum transactions:

● A transaction cannot be used to execute a function of a smart contract.
● The execution of a transaction is free for externally owned accounts (EOAs).
● In order to execute any function of a smart contract the sending of a transaction

is needed.
● All answers are incorrect.

Multiple Choice question No. 5
Q: Regarding queries to smart contracts:

● The execution of query functions has a cost because it changes the blockchain
state.

● A getter is not a query function.



● An externally owned account (EOA) has to pay a fee for executing query
functions.

● All the statements are incorrect.

Multiple Choice question No. 6
Q: Regarding the steps to have a smart contract on a blockchain:

● First, Solidity code is written, then the Solidity code is deployed and finally the
Solidity code is compiled to obtain EVM (Ethereum Virtual Machine) bytecode.

● First, Solidity code is written, then Solidity code is compiled to obtain EVM
(Ethereum Virtual Machine) bytecode and finally, the bytecode is deployed.

● First, Solidity code is written, and finally, this code is deployed.
● All answers are incorrect.

Multiple Choice question No. 7
Q: Regarding Solidity programming language:

● Solidity is designed to target the Bitcoin stack machine.
● Solidity is a very low-level language for implementing smart contracts in which

you write
● programs using byte code.
● Solidity is a high-level, strictly typed language designed to be compiled to

bytecode that targets the EVM (Ethereum Virtual Machine).
● All answers are incorrect.

Multiple Choice question No. 8
Q: Which of the following is not a solidity data type?

● uint256.
● address.
● bool.
● transaction.

Multiple Choice question No. 9
Q: In Solidity, when a function is defined adding the keyword public:

● The function can be called externally and internally (from another function).
● The function cannot be called externally.
● The function can be called externally but not internally (from another function).
● The function can be called internally (from another function) but not externally.

Multiple Choice question No. 10



Q: Regarding the structure of a smart contract, which of the following statements is
correct?

● We first specify the license, then the compiler version and, finally, the contract
code.

● We first specify the compiler version, then the license and, finally, the contract
code.

● We first specify the compiler version and then the contract code.
● The other statements are incorrect.

https://www.investopedia.com/non-fungible-tokens-nft-5115211



