

D6.1.1

Blockchain Specialist Occupation Cards

September/2023

Co-funded by the Erasmus+ Programme of the European Union

PROJECT DETAILS	
Project acronym:	CHAISE
Project name:	A Blueprint for Sectoral Cooperation on Blockchain Skill Development
Project code:	621646-EPP-1-2020-1-FR-EPPKA2-SSA-B
Document Information	
Document ID name:	CHAISE_WP6_D6.1_ BLOCKCHAIN_SPECIALIST _OCCUPATION_CARD_2023-03-31
Document title:	D6.1.1 – Blockchain Specialist Occupation Cards
Туре:	Report
Date of Delivery:	30/06/2023
WP Leader:	ECQA
Task Leader:	ECQA
Implementation Partner:	ECQA
Dissemination level:	Public
DOCUMENT HISTORY	

DOCUMENT HISTORY

Versions	Date	Changes	Type of change	Delivered by
Version 0.1	29/01/2023	Initial document	Draft content	ECQA
Version 0.2	20/03/2023	Added ESCO	Draft content	ECQA
Version 1.0	30/06/2023	Final Version	Final Version	ECQA
Version 1.1	17/09/2023	Revised Version	Integration of Partner Feedback	ECQA

DISCLAIMER

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which maybe made of the information contained therein.

The project resources contained herein are publicly available under the Creative Commons license 4.0 B.Y.

This document is proprietary of the CHAISE Consortium. Project material developed in the context of Project Management & Implementation activities is not allowed to be copied or distributed in any form or by any means, without the prior written agreement of the CHAISE consortium.

	CHAISE Consortium		
Partner Number	Participant organisation name	Short name	Country
1	Université Claude Bernard Lyon 1	UCBL	FR
2	International Association of Trusted Blockchain Applications	INATBA	BE
3	Fujitsu Technology Solutions NV	FUJITSU	BE
4	Ministry of Education and Religious Affairs	YPEPTH	GR
5	ECQA GmbH	ECQA	AT
6	DIGITALEUROPE AISBL	DIGITALEUROPE	BE
7	IOTA Stiftung	ΙΟΤΑ	DE
8	Universitat Politècnica de Catalunya	UPC	ES
9	Duale Hochschule Baden-Württemberg	DHBW	DE
10	Associazione CIMEA	CIMEA	IT
11	INTRASOFT International S.A.	INTRASOFT	LU
12	Institute of the Republic of Slovenia for Vocational Education and Training	CPI	SI
13	European DIGITAL SME Alliance	DIGITAL SME	BE
14	University of Tartu	UT	EE
15	Univerza V Ljubljani	UL	SI
16	BerChain e.V.	BERCHAIN	DE
17	Italia4Blockchain	ITALIA4BLOCKC HAIN	Π
18	Autoritatea Națională pentru Calificări	ANC	RO
19	Akkreditierungs, Certifizierungs- und Qualitätssicherungs- Institut e.V.	ACQUIN	DE
20	EXELIA	EXELIA	GR
21	INDUSTRIA Technology Ltd	INDUSTRIA	BG
22	Crypto4all	C4A	FR
23	Economic and Social Research Institute	ESRI	IE

Abbreviations

BC	Blockchain	
CEDEFOP	European Centre for the Development of Vocational Training	
CoVE	Centres of Vocational Excellence	
CRM	Customer Relationship Management	
DLT	Decentralised Ledger Technology	
ECVET	European Credit system for Vocational Education and Training	
ESCO	Occupations - Skills & Competences -Qualifications	
EQAVET	European Quality Assurance in Vocational Education and Training	
EQF	European Qualifications Framework	
ERP	Enterprise Resource Planning	
ICT	Information and Communications Technology	
ITC	Inter-company Vocational Training Centers	
MOOC	Massive Open Online Course	
MCQ	Multiple Choice Questions	
NQF	National Qualifications Framework	
VET	Vocational Education and Training	
WBL	Work Based Learning	

Table of Contents

1	EXE	ECUTIVE SUMMARY	9
	1.1	INTRODUCTION	9
	1.2	OBJECTIVES	9
	1.3	METHODOLOGICAL APPROACH	9
	1.4	RESULTS/CONCLUSIONS	.11
	1.5	USE OF THIS DOCUMENT	.11
	1.6	EQF AND ESCO USE IN THE CHAISE INITIATIVE	.11
	1.6.	.1 EQF	. 11
	1.6.	.2 ESCO	. 12
	1.6.	.3 ESCO USE IN LABOUR MARKET ANALYSIS	. 13
	1.6.	.4 ESCO USE IN MONITORING BLOCKCHAIN SKILLS EVOLUTION	. 15
	1.6.	5 OVERVIEW OF THE INTEGRATION PROCESS	. 16
2	OC	CUPATIONAL PROFILES (SPECIALITIES)	.16
	2.1	BLOCK CHAIN DEVELOPER	. 17
	2.1.	.1 ESCO DESCRIPTION	. 17
	2.1.	2 REVISED SCOPE NOTE AND DEFINITION	. 18
	2.1.	.3 ESSENTIAL ESCO KNOWLEDGE	. 19
	2.1.	.4 ESSENTIAL ESCO SKILLS	.23
	2.1.	.5 SKILLS REQUIREMENTS AND WORKPLACE TASKS	.25
	2.1.	.6 EMPLOYMENT OPPORTUNITIES	.27
	2.1.		
	2.2	BLOCK CHAIN ARCHITE CT	. 28
	2.2.		
	2.2.		-
	2.2.	.3 ESSENTIAL ESCO KNOWLEDGE	. 30
	2.2.		
	2.2.		
	2.2.		
	2.2.		
	2.3	BLOCK CHAIN MANAGER	
	2.3.		
	2.3.		
	2.3.	.3 SKILLS REQUIREMENTS AND WORKPLACE TASKS	
			5

	2.3.4	EMPLOYMENT OPPORTUNITIES	42
	2.3.5	PROFICIENCY LEVELS AND CERTIFICATE TYPES OFFERED BY CHAISE	42
3	REVISE	D BLOCKCHAIN CONCEPTS AND KNOWLEDGE/SKILLS SPECIFICATIONS IN	
ESC	:0		43
4	MAPPIN	G OF CHAISE LEARNING OUTCOMES TO ESCO CLASSIFICATION SYSTEM	6 0
RE	ERENCE	ES	73

List of tables

Table 1 CHAISE research methodology	9
Table 2 Key elements of the CHAISE research methodology	. 10
Table 3 EQF Level 5 (adapted from Europass, 2023)	12
Table 4 Workplace requirements adapted from CHAISE D2.5.1, 2021	. 25
Table 5 Daily routine of BC developer	26
Table 6 Workplace requirements adapted from CHAISE D2.5.1, 2021	. 36
Table 7 Daily routine of BC architect	. 36
Table 8 Workplace requirements adapted from CHAISE D2.5.1, 2021	. 41
Table 9 Daily routine of BC manager	42

List of figures

Figure 1 ESCO description Blockchain developer (adopted from ESCO database, 2023)17
Figure 2 ESCO skills-set Blockchain developer (adopted from ESCO database, 2023)18
Figure 3 ESCO description Blockchain architect (adopted from ESCO database, 2023)
Figure 4 ESCO skills-set Blockchain architect (adopted from ESCO database, 2023)
Figure 5 ESCO description IT project manager (adopted from ESCO database, 2023)
Figure 6: ESCO essential skills-set ICT Project manager (adopted from ESCO database, 2023)39
Figure 7: ESCO optional skills-set ICT Project manager (adopted from ESCO database, 2023)40

1 EXECUTIVE SUMMARY

1.1 INTRODUCTION

CHAISE is a Sector Skills Alliance financed by the Erasmus+ Programme. Project's core mission is to develop a strategic approach on blockchain skills development for Europe, as well as to deliver future - proof training solutions, in order to tackle blockchain skill shortages and to respond to the current and future skill needs of the European Blockchain workforce.

Under WP6 "Occupational requirements, recognition and certification" the task T6.1 "Definition of Blockchain Specialist occupation" aims at the defining the EU-wide skills requirements for blockchain professionals based on the results from WP2, WP3 and WP4, and the subsequent creation of dedicated blockchain occupation profile, to be embedded into ESCO and ECQA classification systems.

1.2 OBJECTIVES

This Blockchain Specialist occupation card lays down a detailed set of attributes, including an explanation of the occupation in the form of scope note and definition, the sum of knowledge, skills and competences considered necessary for this occupation on an EU-wide scale, proficiency level, and eventually, the relevant qualifications awarded in education and training systems across Europe.

1.3 METHODOLOGICAL APPROACH

The target group of the CHAISE Occupational Cards includes qualification and accreditation bodies across Europe, qualification experts, VET providers, VET trainers and curricula designers in ICT field, as well as VET learners. The methodology followed for identifying and characterizing the relevant occupational profiles in the Blockchain Specialist domain is depicted in Tables 1 and 2.

	Blockchain labour market characteristics				
Blockchain	Quantitative	Qualitative	Blockchain		
Skill Demand	research data	research data	Skill Supply		
•	Survey data EU organizations	 Interviews Desk research Database research 	-		
Blockchain Skills Capacity EU					
 Skills r 	Skills needs today & in the future				

Table 1 CHAISE research methodology

Co-funded by the Erasmus+ Programme of the European Union

- Skill development strategies
- Skill typology
- Training system of the future

Table 2 Key elements of the CHAISE research methodology

Definition of	Definition of Skills Mismatches for the European Blockchain Sector				
Study on Blockchain Iabour market characteristics	Study on Blockchain skill demand	Registry of Blockchain job ads	Study on Blockchain skill supply	Registry of Blockchain educational and training offerings	
Data collection and analysis of data from official		In-depth expert interviews on Skills in BC sector		In-depth expert interviews with education & training providers of BC programs in Europe	
statistical databases	Desk research on blockchain skill needs evidence		Analysis of e & non-formal education pro		
Study on relevant online	Analyses of BC job vacancies	crelevant online	Desk researc BC ICT comr fora		
job vacancies	European Survey on BC Skills		Analysis of p BC related V programs	articipation in ET training	
Expert Validation	Expert Validation		European Su Skills	-	
Research Methodology on Labour market and Skills Intelligence					

This approach had led to the three occupational profiles Blockchain Developer, Blockchain Architect, and Blockchain Manager. The Skill Sets in terms of Modules and Learning Outcomes have been specified in CHAISE Deliverable D.5.1.1 Blockchain Learning Outcomes Report.

The Learning Outcomes specified there provided the basis for the derivation of skill and knowledge items in the ESCO database. With priority, existing ESCO skills and knowledge elements have been mapped to CHAISE Learning Outcomes. In case this was not possible, new skills and knowledge items have been proposed. The entire proposal was submitted to the ESCO Office, who had it reviewed by their network of experts. The result is specified in this deliverable, and will be introduced to the ESCO database in the next update cycle (end of 2023).

1.4 RESULTS/CONCLUSIONS

The key result of this task is a full set of ESCO Profiles for the following occupational profiles:

- Blockchain Developer: major revision and extension of the already existing ESCO profile.
- Blockchain Architect: major revision and extension of the already existing ESCO profile).
- Blockchain Manager: extension of the existing ICT Project Manager occupational profile.

These results will be fully available in the ESCO database from end 2023, aligned with the update cycles decided by the ESCO Office.

1.5 USE OF THIS DOCUMENT

This deliverable is intended for public use.

1.6 EQF AND ESCO USE IN THE CHAISE INITIATIVE

1.6.1 EQF

The European Qualifications Framework (EQF) was recommended by the European Parliament and the Council on 23 April 2008 and repealed on 22 May 2017 (Council of the European Union, 2017). It is:

- A common European reference framework whose purpose is to make qualifications more readable and understandable across different countries and systems;
- The core of the EQF is its eight reference levels defined in terms of learning outcomes, i.e., knowledge, skills and autonomy-responsibility.

The EQF is an 8-level, learning outcomes-based framework for all types of qualifications that serves as a translation tool between different national qualifications frameworks. This framework helps improve transparency, comparability and portability of people's qualifications and makes it possible to compare qualifications from different countries and institutions.

The EQF covers all types and all levels of qualifications, and the use of learning outcomes makes it clear what a person knows, understands and is able to do. The qualification level increases in accordance to the level of proficiency; level 1 is the lowest and level 8 the highest. Most importantly the EQF is closely linked to national qualifications frameworks, making it possible to provide a comprehensive map of all types and levels of qualifications in Europe; such qualifications are increasingly accessible through qualification databases. The Chaise Blockchain qualification is built around EQF level 5 (see table 1). In the module structure of the CHAISE programme, lectures are

accompanied by an explanatory note on how the teacher can adapt the level from EQF level 5 to EQF level 6.

Level 5 – Learning outcomes		
Knowledge	Skills	Responsibility and autonomy
Comprehensive, specialised,	A comprehensive range of	Exercisemanagementand
factual and theoretical knowledge	cognitive and practical skills	supervision in contexts of work or
within a field of work or study and	required to develop creative	study activities where there is
an awareness of the boundaries of	solutions to abstract problems	unpredictable change; review and
that knowledge		develop performance of self and
		others

Table 3 EQF Level 5 (adapted from Europass, 2023)

1.6.2 ESCO

<u>ESCO</u> is the multilingual classification of *European Skills, Competences, Qualifications and Occupations* (Council of the European Union, 2017). It was launched in July 2017 as a first full version as the result of a stakeholder consultation project in 2010. It describes the occupations and knowledge, skills and competences of all sectors and levels within the European labour market, aiming at closing the gap between the world of work and education and developing a shared and transparent understanding of occupations and skills among member states. This will facilitate the exchange of information between people, stakeholders, public administration, and electronic systems.

ESCO is a European Commission project, run by Directorate General Employment, Social Affairs and Inclusion (DG EMPL). It is available in an online portal and can be consulted free of charge. Its first full version (ESCO v1) was published on the 28th of July 2017. The latest version of the classification can be <u>downloaded</u> or retrieved through the <u>ESCO API</u>.

ESCO is divided in three interconnected pillars: the occupation, the knowledge, skills and competences (or skills pillar) and lastly, the qualifications. The development of the ESCO qualifications is an ongoing process that is filled in with qualifications from national databases. Every occupation in the occupational pillar is linked to a job profile that in turn includes a description, scope note and definition. The job profiles also list the skills and competences that are relevant for the specific profession.

ESCO is managed by the Directorate General for Employment, Social Affairs and Inclusion, supported by Cedefop and other stakeholders . ESCO makes an explicit distinction between transversal and occupation-specific skills (Cedefop, 2019). In the CHAISE blueprint, ESCO is deployed as a reference point, along with EQF, ECVET and EQAVET.

The core added value comes from its facilitation of the following use cases, essential to the European job market:

1) ESCO is used in online applications and platforms:

ESCO's concepts and the relationships between them can be understood by electronic systems. This allows different systems and platforms to use ESCO to suggest the most relevant jobs to jobseekers on the basis of their skills or the most relevant training to people who want to reskill or upskill.

2) ESCO connects people and jobs:

ESCO contains accurate descriptions of occupations and skills that can be used in both drafting job offers and CVs, facilitating comparability and matching. This will support both employers to find the right people for their vacancies and jobseekers to find the right jobs for their skills.

3) ESCO connects employment to education:

The use of ESCO in job offers, research, big data analyses, etc., helps education and training providers to understand what skills the labour markets need. They can then adapt their curricula accordingly to prepare their students better for tomorrow's labour markets. ESCO also helps potential employers to better understand what students have learned.

4) ESCO connects labour markets and promotes mobility:

ESCO is available in 28 languages, allowing job seekers and employers to better communicate about skills, training and jobs in any chosen European language. Through its use in the EURES portal and in many other online platforms, it helps European public and private employment services to offer their services across borders, languages and electronic systems, so that they can better support people who want to work in another European country.

1.6.3 ESCO USE IN LABOUR MARKET ANALYSIS

The European Classification of Skills, Competences and Occupations (ESCO) was used in the planning, implementation and results analysis of skills intelligence gathering activities carried out in WP2, through the following ways.

A) T2.2: Demarcating the Blockchain labour market

The Blockchain sector was demarcated from the wider ICT sector using the NACE and ESCO classifications. The first step was to identify which ICT related statistical classification of economic activities (NACE) and occupations (based on ESCO and CEN/CWA 16458-1) are most relevant to Blockchain for each partner country. The primary field of investigation was the 4-digit ESCO classification; namely the sub-categories under "251 - Software and application developers and analysts" and "252 - Database and network professionals". Results showed that the most relevant ICT occupation to include Blockchain employees is "2512 - Software Developers". Further to "software developers", other occupational profiles that have been identified to work on Blockchain use cases and need upskilling are:

- 2513 Web and Multimedia Developers
- 2519 Software and Applications Developers and Analysts Not Elsewhere Classified
- 2529 Database and Network Professionals Not Elsewhere Classified
- 2521 Database Designers and Administrators
- 2511.13 ICT System Architect

B) T2.2: Collection of Block chain relevant job vacancies

The next step included the collection of Blockchain relevant job vacancies to a) identify the skills mostly valued and sought after by employers, b) explore what educational qualifications and experience are required from Blockchain employees, and c) explore in which sectors there is the highest demand for Blockchain employee. Manual documentation and web-scraping technologies were used to extract online job advertisements from job portals from all partnership countries. The collected Blockchain related jobs were mapped and coded according to the International Standard Classification of Education (ISCED); ESCO v1.

C) T2.3: Identification of current demand for Blockchain skills

Further to the above, a survey addressed to BC employers and field experts was conducted to gather insights on actual workplace requirements and corresponding skill needs, difficulties to recruit and retain staff and future priorities/tendencies for the sector. The survey investigated/covered the entire spectrum of technical, non-technical and transversal skills required for the 3 most demanded BC profiles. The list of skills included in the survey followed the ESCO taxonomy for skills and competences. Correspondingly, the analysis was realised on this basis, and the results obtained and detailed in the project WP2 deliverables, in terms of skills requirements, are in line with the ESCO taxonomy.

1.6.4 ESCO USE IN MONITORING BLOCKCHAIN SKILLS EVOLUTION

The methodology for forecasting Blockchain demand/supply involves gathering information on Blockchain related jobs and mapping this information to International Standard Classification of Occupations (ISCO) categories. ISCO categories are used in order to apply CEDEFOP occupational forecasts that are presented as ISCO categories. In particular, during the first-year of forecasting activities, custom made web-scraping tool was used to extract online job advertisements from LinkedIn for each EU country. Search criteria were based on the keyword "Blockchain" appearing in the job title and/or the detailed job advertisement. Then, the collected Blockchain jobs were mapped to ISCO categories to derive the proportion of specific occupations that are Blockchain related and apply these proportions to CEDEFOP forecasts to estimate the demand for Blockchain skills in the future. Initially, the 4-digit ISCO occupation classification was considered but subject to data constraints in the forecasting model (specifically from the EU-LFS) a 3-digit ESCO/ISCO mapping was eventually employed. The following ISCO categories contain most of blockchain related jobs and were used to forecast blockchains skills demand:

- (ISCO 251) Software and Applications Developers and Analysts
- (ISCO 133) Information and Communications Technology Services Managers
- (ISCO 252) Database and Network Professionals
- (ISCO 121) Business Services and Administration Managers
- (ISCO 261) Legal Professionals

ESCO classification has introduced the following blockchain related occupations: Blockchain Architect (ESCO 2511.14.1) and Blockchain Developer (ESCO 2512.4.1), also in line with CHAISE results (as depicted below). This information provides alternative information on key blockchain workers. More specifically, ESCO classification defines skills and competencies of these blockchain occupations that are important when trying to understand the needs of the blockchain labour market and anticipating blockchain skills demand in the future. Skills and competencies related to blockchain occupations provides necessary information to address skills mismatch in the blockchain labour market. This ESCO information supplements our analysis and provides more detail for the associated ISCO categories that are used to forecast blockchain skills demand and supply.

1.6.5 OVERVIEW OF THE INTEGRATION PROCESS

On 13 April 2022, the CHAISE Project Management Team and WP6 Leader (ECQA) had an introductory meeting with ESCO representatives in order to present project results and discuss the procedure and requirements for the integration of the identified BC occupational profiles in the database. The meeting was held in a very good atmosphere with both parties sharing a mutual interest for each other's work and a strong willingness to synergise. Next, the ESCO Technical Team reviewed the CHAISE research findings, acknowledging their added value and confirming their appropriateness and relevance to be incorporated into the ESCO classification system. In a follow-up meeting held on 16 November 2022, it was agreed that the CHAISE partnership will: a) update/revise the occupational profiles of "Blockchain Developer" (2512.4.1) and "Blockchain Architect" (2511.14.1), already included in the ESCO database following the latest update in 2020-21, and b) create a new occupation profile for the role of "Blockchain Manager", which is currently missing. The above also implies the revision of existing skill concepts as well as the creation of new ones directly linked to the aforementioned occupational profiles/roles.

Operationally, the ESCO Technical Team provided the partnership with detailed instructions (including the ESCO feedback template and ESCO terminological guidelines) to guide the integration process. In early 2023, the CHAISE partnership, led by ECQA, submitted all the necessary input for the update of the 3 identified Blockchain profiles. On 3 May 2023, after reviewing the received input, the ESCO Technical Team informed the CHAISE partnership that 34 proposed skills for the occupational profiles of "Blockchain Developer" and "Blockchain Architect" had been approved and will be integrated into the new version of the classification system, scheduled for release in May 2024. Regarding the "Blockchain Manager" profile, the Technical Team suggested introducing it as an alternative label for the role of "ICT project manager" instead of creating a standalone occupation profile. This suggestion was based on two reasons: a) the limited number of online job ads specifically referencing the role of "Blockchain Manager", and b) the fact that the need for management-related skills pertaining to BC and DLT applications (i.e., mostly focused on the introduction of the BC technology in organizations, and the rollout of BC use cases in the market) were considered to be broad and applicable across various fields, rather than being confined to the boundaries of the Blockchain domain. The CHAISE Project Management Team and the WP Leader (ECQA) agreed to proceed with such an approach, as it aligns with the Alliance's expectations and objectives. This decision also serves as recognition of the quality of the produced results.

2 OCCUPATIONAL PROFILES (SPECIALITIES)

The evidence drawn from skills intelligence gathering activities (WP2) showed the emergence of three new roles/positions in the European Blockchain field: a) Blockchain Developer, b) Blockchain 16

Architect, and c) Blockchain Manager. This created the need for the introduction of 3 new occupational profiles directly linked to the Blockchain sector, instead of the one initially planned in the Application Form (i.e., "Blockchain Specialist"). The new occupations will fit to the 4th level of ESCO classification (as reference framework), under 251 – "Software and application developers and analysts" and "252 - Database and network professionals" sub-groups. For each identified profile, a dedicated occupational card will be created, with the aim to be eventually embedded into ESCO and other sectoral classification schemes (e.g., CEN/CWA 16458-1).

2.1 BLOCKCHAIN DEVELOPER

2.1.1 ESCO DESCRIPTION

According to the ESCO classification system, Blockchain Developers: *"implement or program blockchain-based software systems based on specifications and designs by using programming languages, tools, and blockchain platforms"* (ESCO database, 2023).

Scope:

blockchain developer
Professionals > Information and communications technology professionals > Software and applications developers and analysts > Software developers > software developer > blockchain developer >
Description
Code
2512.4.1
Description
Blockchain developers implement or program blockchain-based software systems based on specifications and designs by using programming languages, tools, and blockchain platforms.

Figure 1 ESCO description Blockchain developer (adopted from ESCO database, 2023)

Under skills pillar, the skills and competences related to Blockchain Developer are presented below:

Skills & Competences

use software design patterns	use software libraries provide technical documentation
interpret technical requirements	s debug software
utilise computer-aided software	engineering tools
Essential Knowledge	e
software components libraries	ICT debugging tools
•	
principles of distributed ledger t	technology blockchain consensus mechanisms
decentralized application frame	eworks smart contract computer programming
blockchain openness bloc	kchain platforms
blockchain openness bloc	kchain platforms
[
Optional Skills and C	Competences
Optional Skills and C	
Optional Skills and C	Competences markup languages implement front-end website design
Dptional Skills and C design user interface use	Competences markup languages implement front-end website design
Dptional Skills and C design user interface use adapt to changes in technologic	Competences markup languages implement front-end website design cal development plans
Dptional Skills and C design user interface use adapt to changes in technologic Dptional Knowledge	Competences markup languages implement front-end website design cal development plans
Dptional Skills and C design user interface use	Competences markup languages implement front-end website design cal development plans

Figure 2 ESCO skills-set Blockchain developer (adopted from ESCO database, 2023)

2.1.2 REVISED SCOPE NOTE AND DEFINITION

CHAISE proposes a major revision of the original Blockchain Developer ESCO definition and skill-set, which had been created based upon a proposal of one of the CHAISE consortium members a few years back. The revised specification is indicated below.

Job Title: Blockchain Developer

Job Overview: The Blockchain Developer codes the Blockchain applications and takes care of problem solving at the micro level. The job role demands general software development skills with great emphasis on the development skills of Blockchain technology and applications, operational business skills, and all transversal future skills, particularly self-managed work. (2.5.1)

Minimum entry requirements: There are no formal entry requirements for candidates undertaking these qualifications. Learners are advised to enter the course with a completed level 4 qualification in an area relevant to the job role or with equivalent professional experience.

Target groups (including ESCO classification): (25-) ICT Professionals such as for example (2512) Software Developers, (2513) Web and Multimedia Developers, (2519) Software and Applications

Co-funded by the Erasmus+ Programme of the European Union

18

Developers and Analysts Not Elsewhere Classified, (2521) Database Designers and Administrators, (2529) Database and Network Professionals Not Elsewhere Classified.

2.1.3 ESSENTIAL ESCO KNOWLEDGE

Concept name	Description	Alternative labels/synonyms
	The study of the areas in which	
	blockchain is implemented.	
	Banking and Finance, Businesses	
Blockchain application areas	(Supply Chain Management,	Areas of blockchain application;
Biockchain application areas	Healthcare, Real Estate, Media,	blockchain application fields;
	Energy), and Governmentare	
	some examples of this application	
	areas.	
	The knowledge of applications	
	where blockchains can provide	
	significant added value. They	
	include applications in Banking	
	and Finance (International	
	Payments, Capital Markets, Trade	
	Finance, Regulatory Finance and	
Dissister employed and	Audit, Money Laundering	
Blockchain applications	Protection, Insurance, Peer-to-	Blockchain functions;
	Peer Transactions) and Business	
	(Supply Chain Management,	
	Healthcare, Real Estate, Media,	
	Energy), Government (Identity	
	Management, Voting, Taxes, Non-	
	Profit Agencies,	
	Compliance/Regulatory Oversight).	
	The essential security principles,	
	methods and controls for	
	blockchain applications. Identity	
Die skehe in engliestiske se swit	and access management, key	Blockchain security; security
Blockchain applications security	management, data privacy, secure	controls for blockchain
principles	communication, smart contract	applications;
	security, and transaction	
	endorsement are included as part	
	of these principles.	

Concept name	Description	Alternative labels/synonyms
Blockchain components	The study of essential blockchain components and concepts as peer networks, smart contracts, memberships, events, ledgers, system integration, wallets, and system management.	Blockchain concepts; blockchain;
Blockchain design patterns	Re-usable blockchain solution approaches including non-blocking user interface design, asynchronous API design, secure synchronization, time stamping, enterprise business integration, simple assets, and assets with rules.	Design patterns of blockchain
Blockchain history	Key historical facts and milestones in the blockchain technologyas well as the implementations and applications that emerged on top of it.	History of blockchain; blockchain technology history;
Blockchain mining principles	Essential blockchain and cryptocurrency mining types and principles include ASIC mining, GPU mining, CPU mining, Cloud mining, and Mining pools.	Principles of mining in blockchain;
Blockchain terminology	The terms used in blockchain sector which include account, attestation, block, Byzantine fault, coin, consensus, crypto-, decentralized application (DApp), DeFi, digital identity, distributed ledger, encryption, ether, fork, hyperledger, Merkle trie, mining, node, NFT, Proof of Authority, Proof of Stake, Proof of Work,	Blockchain terms; terminology of blockchain

Concept name	Description	Alternative labels/synonyms
	public/private blockchain, trustless,	
	validity proof, 51% attack, etc.	
	The study of diverse blockchain	
	business models such as	
	Blockchain-Based Software	
	Products, Blockchain Development	
Blockchain-based business	Platforms, Token Economy-Utility	Models for blockchain-based
models	Token Business Model, P2P	business;
	Blockchain Business Model, as	
	well as Blockchain as a Service	
	Business Model (BaaS).	
	Key legal regulations around the	
	blockchain, both existing and	
	emerging ones. In Europe,	Regulatory framework for
Blockchain-based services	regulations around the Digital Euro	blockchain; legal regulations for
regulation	and Crypt-Assets, as well as the	blockchain; legal guidance for
	Pan-European blockchain	blockchain;
	regulatory sandboxare considered	
	mostessential.	
	The knowledge of decentralised	
	identifiers (DIDs). DIDs enable	
	verifiable and decentralised digital	
	identity related to different subjects	
Decentralised identifiers	determined by the controllers of	DiDs
	these descentralised identifiers	
	(e.g. an organisation, individual	
	person, data model, abstract	
	entity).	

Concept name	Description	Alternative labels/synonyms
Digital identity management	The process of providing,	IAM; digital identity methods;
	managing, auditing and securing	
	digital identities to facilitate and	
	enable approved, authentic	
	requests or connections to view	
	companydata, services, systems,	
	networks, and assets.	
distributed ledger technologies	The knowledge of essential	consensus protocols of distributed
consensus protocols	blockchain consensus protocols	ledger technologies;
	including Proof-of-Work (PoW),	
	Proof-of-Stake (PoS), Delegated	
	Proof-of-Stake (DPoS), Practical	
	Byzantine Fault Tolerance (pBFT).	
Distributed ledger technologies	The knowledge of the essential	Security in distributed ledger
vulnerabilities	distributed ledger vulnerabilities	technology;
	including exchange hack, 51%	
	attack, exitscam, extortion, DeFi,	
	phishing, and conclusion.	
Game theory	The study of mathematical models	Conflict resolution theory; rational
	of strategic decisions among	choice theory; interactive decision
	stakeholders. It has applications in	theory; game theory for blockchain
	all fields of social science, as well	
	as in systems science, computer	
	science and logic. Essential	
	concepts are the Nash Equilibrium	
	and the Prisoner's Dilemma.	
Smart contract programming	Essential Smart Contract	programming languages for smart
languages	programming languages include	contract;
	Solidity, Rust, JavaScript, Vyper	
	and Yul.	

2.1.4 ESSENTIAL ESCO SKILLS

Concept name	Description	Altenative labels/synonyms
Analyse decentralised	Analyse decentralized applications for their	Analyse dApps;
applications	specific performance requirements in terms	
	of key functions and properties such as	
	identify management, access control, data	
	security, transparency, performance,	
	scalability, and maintainability.	
Design process for	Design processes for blockchain-based	Design of a blockchain-based
blockchain-based systems	systems which involves the clear	system; design process for
	identification of problems to be solved	blockchain application
	through blockchain, specifying the business	architecture; design process for
	requirements, identifying a consensus	blockchain technology;
	mechanism, choosing the most suitable	
	blockchain platform, designing the	
	blockchain nodes, planning the blockchain	
	configuration, building blockchain APIs,	
	designing user interfaces, and integrating	
	accelerators for optimization.	
develop blockchain	Develop new blockchain architectures that	build innovative blockchain
innovative architectures	address properties and priorities as they are	architectures;
	needed by specific applications. Argue the	
	advantages and shortcomings of such new	
	architectures with respect to existing ones.	
Evaluate blockchain	Evaluate blockchain architectures with	Evaluate blockchain
architectures	respect to their suitability for specific	applications infrastructure;
	applications, given the specific importance	
	and priorities of architecture properties for	
	these applications.	
Explain blockchain	Explain the consequences, impact, and	Explain practical implications of
implications	implications of using blockchain technology	blockchain; analyse the
	on the business processes they drive, as	implications of blockchain for
	well as on a larger scale, also including	governance;
	social and ecological aspects.	

Concept name	Description	Altenative labels/synonyms
Explain distributed ledger	Explain the principles of the system	Explain distributed ledger
technologies principles	architecture underlying distributed ledger	technologies properties;
	technologies (DLT), in particular blockchain.	
	Understand the DLT system architecture in	
	terms of functional components in the core	
	and service layers, the application service	
	platform, DLT services, and external	
	services. Understand the interaction of these	
	components to provide DLT-based functions	
	such as consensus mechanism functions,	
	ledger management functions, smart	
	contract mechanism functions, and	
	distributed application management	
	functions.	
Identify blockchain	Identify blockchain innovation opportunities	Use blockchain to drive
innovation opportunities	through the introduction of blockchain-based	innovation; analyse blockchain-
	solutions, within a particular sector, but also	based business innovation;
	across sectors. Understand the	
	consequences of essential blockchain	
	properties such as transparency and security	
	for driving forward innovations.	
Implement smart contracts	Implement smart contracts for various	Apply smart contracts;
	applications, and in the most important smart	
	contract frameworks such as Bitcoin and	
	Ethereum, and in the most suitable	
	programming languages such as Solidity,	
	Rust, JavaScript, Vyper and Yul.	
Outline blockchain-based	Outline blockchain-based identity	explain blockchain-based
identity management	management and access control in terms of	identity management system;
	how they work, what their benefits are	
	compared to current solutions, and how they	
	can be applied for specific applications.	

Concept name	Description	Altenative labels/synonyms
Recognise blockchain	Recognise opportunities for the introduction	Identify blockchain technology
application areas	of blockchain-based solutions in various	application domains; detect
	application domains (e.g., supply chains,	blockchain technology
	product-servicesystems, finances, etc.), as	application domains;
	well as their transformative potential in the	
	concerned application area in terms of	
	people's skills, roles theyneed to fulfill, and	
	processes these roles contribute to. Identify	
	the added value blockchain-based solutions	
	would bring with respect to traditional	
	solutions.	
Recognise blockchain	Recognise risks associated with blockchain	Identify risks in blockchain
risks	and cryptocurrency. Apart from standard	technology; predict risks in
	risks associated with the business processes	blockchain technology;
	they are driving, blockchains bear value-	
	transfer risks linked to the peer-to-peer type	
	of value transfer. Risk are also linked to	
	smart contracts as digital representations of	
	more or less complexbusiness relationships.	

2.1.5 SKILLS REQUIREMENTS AND WORKPLACE TASKS

CHAISE research on skills mismatches (CHAISE D2.5.1, 2021) identified a large diversity in terms of Blockchain strategy and regulation maturity across Europe. By conducting a topography of Blockchain occupations and job profiles in EU countries, the study gathers the characteristics of the Blockchain professional profiles in terms of skills needed in the working environment. Table 3 describes the skills of Blockchain developer.

Table 4 Workplace requirements adapted from CHAISE D2.5.1, 2021

Technical & Blockchain specific Skills	Professional / Business Skills	Transversal Future Skills
 Coding (C++, Java,	 Product Development	Self-efficacy & Self-
Python)	skills	confidence

Cryptography Product Management Self-determination & • ٠ • skills Development Autonomy Smart Contract Skills in Legal & Self-management/ Development Compliance matters organization / regulation & Self-responsibility Distributed Network Finance and Controlling Engineering skills skills Cooperation Competence Frontend & Backend Human Resources Communication • Development **Developmentskills** Competence **Customer Success** Development of Decision-making • decentralised Apps. Design Competence & taking Maths and Stats Affiliate Marketing Responsibility • Initiative and Protocol Engineering Marketing skills Performance competence **Blockchain Solution** Ambiguity competence Design **Design Thinking** competence Innovation & Creativity competence Future orientation & Willingness to Change The daily routine of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain online

ine daily routine of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAISE Registry (2021) of Blockchain developers, as identified in CHAIS

Table 5 Daily routine of BC developer

Daily routine of BC Developer Professionals	
reve blackebein elserithme (eeding)	

- Develop and improve blockchain algorithms (coding)
- Define core protocols of a blockchain ecosystem
- Develop clients
- Write smart contracts
- Experiment with consensus mechanisms
- Debug software
- Interpret technical requirements
- Provide technical documentation
- Use software design patterns
- Use software libraries
- Utilise computer-aided software engineering tools

2.1.6 EMPLOYMENT OPPORTUNITIES

Currently, there are only a few market data explicitly related to blockchain profiles (CHAISE D.2.2.1 report, 2021). The following list has been derived from a study on "Job vacancies characteristics" (CHAISE D.2.2.1, 2021, chapter 5.2).

- ICT sector (information technology & services; computer software; internet, telecommunications)
- Financial sector (financial services; banking industry)
- Management consulting
- Higher education
- Research industry
- Marketing and advertising

Blockchain skills are often embedded within the following job profiles:

- Software Engineer
- Full Stack Engineer
- Java Software Engineer
- Back End Developer

2.1.7 PROFICIENCY LEVELS AND CERTIFICATE TYPES OFFERED BY CHAISE

In compliance with the CHAISE Validation Methodology (CHAISE D.5.4, 2023), and in order to get qualified and certified for different level of proficiency, Blockchain Developers can pursue the following different certification paths:

- 1) Theory micro-certificates (badges) per CHAISE Skill Card Module (CHAISE D.6.3, 2023):
 - a. no prior experience required and
 - b. course material study with integrated (in general, automated) competence evaluation and
 - c. exam through a certifying organisation (ECQA).
- 2) Practical micro-certificates (badges) per CHAISE Skill Card Module:
 - a. elaboration of at least one practical example and one practical case study or
 - b. evidence of prior practical experience.
- 3) ECQA Summary Certificate summarizing all achievements 1) and 2).

2.2 BLOCKCHAIN ARCHITECT

2.2.1 ESCO DESCRIPTION

According to the ESCO classification system, Blockchain Architects: "are ICT system architects that are specialised in blockchain-based solutions. They design architecture, components, modules, interfaces, and data for a decentralised system to meet specified requirements." (ESCO database, 2023).

blockchain architect
Professionals > Information and communications technology professionals > Software and applications developers and analysts > Systems analysts > ICT system architect > blockchain architect >
Description
Code
2511.14.1
Description
Blockchain architects are ICT system architects that are specialized in blockchain-based solutions. They design architecture, components, modules, interfaces, and data for a decentralized system to meet specified requirements.
Scope note
Excludes the development of decentralized systems.

Figure 3 ESCO description Blockchain architect (adopted from ESCO database, 2023)

Under skills pillar, the skills and competences related to the Blockchain Architect profile are presented below:

Scope note: Excludes the development of decentralised systems.

define technical requirem	interpret technical requirements
create business process	models design information system define software architecture
analyse ICT system	
]	
Essential Knowle	edge
blockchain openness	blockchain platforms design thinking business processes
systems development life	e-cycle smart contract blockchain consensus mechanisms
principles of distributed le	
principles of distributed le	edger technology
	<u> </u>
Optional Skills a	nd Competences
	nd Competences
Optional Skills a	nd Competences
Optional Skills a	nd Competences pe design cloud architecture debug software
Optional Skills and develop software prototype Optional Knowle	nd Competences pe design cloud architecture debug software

Figure 4 ESCO skills-set Blockchain architect (adopted from ESCO database, 2023)

2.2.2 REVISED SCOPE NOTE AND DEFINITION

CHAISE proposed a major revision of this original Blockchain Developer ESCO definition and skill-set, which had been created based upon a proposal of one of the CHAISE consortium members a few years back. The revised specification is indicated below.

Job Title: Blockchain Architect

Job Overview: The Blockchain Architect designs the multi-levelled architecture of a large Blockchain system and software landscape and ensures the coherence of all aspects of a project as an integrated system. Furthermore, the BC Architect assures the overall technical quality of the BC application.

The job role requires a strong micro and macro perspective. It has a strong focus on developing creative projects in product and use case design, including the conception and design of Blockchain solutions. (2.5.1)

Minimum entry requirements: There are no formal entry requirements for candidates undertaking these qualifications. Learners are advised to enter the course with a completed level 4 qualification in an area relevant to the job role or with equivalent professional experience.

Target groups (including ESCO classification): (25-) ICT Professionals such as for example (2511) ICT System Architects, (2512) Software Developers, (2513) Web and Multimedia Developers, (2514) Applications programmers, (2519) Software and Applications Developers and Analysts Not Elsewhere Classified, (2521) Database Designers and Administrators (2529) Database and Network Professionals Not Elsewhere Classified.

2.2.3 ESSENTIAL ESCO KNOWLEDGE

Concept name	Description	Alternative labels/synonyms
Blockchain concept application	The process of transferring essential blockchain and, more generally, distributed ledger concepts to diverse application domains. For this, the domain-specific challenges, solutions, and consequences of introducing peer-to-peer transaction and consensus patterns need to be well understood.	Blockchain technology application;
Blockchain application areas	The study of the areas in which blockchain is implemented. Banking and Finance, Businesses (Supply Chain Management, Healthcare, Real Estate, Media, Energy), and Government are some examples of this application areas.	Areas of blockchain application; blockchain application fields;
Blockchain signature schemes	Essential digital signature schemes include the RSA scheme, the El-Gamal scheme, Hash functions, Birthday Attacks, the Digital Signature Standard.	Digital signature schemes; signature schemes for blockchain
Blockchain applications	The knowledge of applications where blockchains can provide significant added value. They include applications in Banking and Finance (International Payments, Capital Markets, Trade Finance, Regulatory Finance and Audit, Money Laundering Protection, Insurance, Peer-to-Peer Transactions) and Business (SupplyChain Management, Healthcare, Real Estate, Media, Energy), Government (Identity Management, Voting, Taxes, Non-Profit Agencies, Compliance/RegulatoryOversight).	Blockchain functions;

Concept name	Description	Alternative labels/synonyms
Blockchain applications security principles	The essential security principles, methods and controls for blockchain applications. Identity and access management, key management, data privacy, secure communication, smart contract security, and transaction endorsement are included as part of these principles.	Blockchain security; security controls for blockchain applications;
Blockchain components	The study of essential blockchain components and concepts as peer networks, smart contracts, memberships, events, ledgers, system integration, wallets, and system management.	Blockchain concepts; blockchain;
Blockchain design patterns	Re-usable blockchain solution approaches including non-blocking user interface design, asynchronous API design, secure synchronization, time stamping, enterprise business integration, simple assets, and assets with rules.	Design patterns of blockchain
Blockchain history	Key historical facts and milestones in the blockchain technologyas well as the implementations and applications that emerged on top of it.	History of blockchain; blockchain technologyhistory;
Blockchain mining principles	Essential blockchain and cryptocurrency mining types and principles include ASIC mining, GPU mining, CPU mining, Cloud mining, and Mining pools.	Principles of mining in blockchain;
Data securityprinciples	The principles of information and data security. They include, among others, confidentiality, integrity, and availability.	Information securityprinciples; data securitymethods
Blockchain terminology	The terms used in blockchain sector which include account, attestation, block, Byzantine fault, coin, consensus, crypto-, decentralized application (DApp), DeFi, digital identity, distributed ledger, encryption, ether, fork, hyperledger, Merkle trie, mining, node, NFT, Proof of Authority, Proof of Stake, Proof of	Blockchain terms; term inology of blockchain

Concept name	Description	Alternative labels/synonyms
	Work, public/private blockchain, trustless,	
	validity proof, 51% attack, etc.	
	The study of diverse blockchain business	
	models such as Blockchain-Based Software	
	Products, Blockchain Development	
Blockchain-based	Platforms, Token Economy-Utility Token	Models for blockchain-based
business models	Business Model, P2P Blockchain Business	business;
	Model, as well as Blockchain as a Service	
	Business Model (BaaS).	
	Key legal regulations around the blockchain,	
	both existing and emerging ones. In Europe,	Regulatory framework for
Blockchain-based	regulations around the Digital Euro and	blockchain; legal regulations for
services regulation	Crypt-Assets, as well as the Pan-European blockchain regulatory sandboxare	blockchain; legal guidance for blockchain;
	considered most essential.	DIOCKCHAIII,
	The knowledge of decentralised identifiers	
	(DIDs). DIDs enable verifiable and	
	decentralised digital identity related to	
Decentralised identifiers	different subjects determined by the	DiDs
	controllers of these descentralised identifiers	
	(e.g. an organisation, individual person, data	
	model, abstract entity).	
	The process of providing, managing, auditing	
Digital identity	and securing digital identities to facilitate and	
management	enable approved, authentic requests or	IAM; digital identity methods;
-	connections to view company data, services,	
	systems, networks, and assets.	

Concept name	Description	Alternative labels/synonyms
Distributed ledger technologies consensus protocols	The knowledge of essential blockchain consensus protocols including Proof-of-Work (PoW), Proof-of-Stake (PoS), Delegated Proof-of-Stake (DPoS), Practical Byzantine Fault Tolerance (pBFT).	Consensus protocols of distributed ledger technologies;
Distributed ledger technologies vulnerabilities	The knowledge of the essential distributed ledger vulnerabilities including exchange hack, 51% attack, exits cam, extortion, DeFi, phishing, and conclusion.	Security in distributed ledger technology;

2.2.4 ESSENTIAL ESCO SKILLS

Concept name	Description	Alternative labels/synonyms
Evaluate blockchain	Evaluate blockchain architectures with	Evaluate blockchain
architectures	respect to their suitability for specific	applications infrastructure;
	applications, given the specific importance	
	and priorities of architecture properties for	
	these applications.	
Explain blockchain	Explain the consequences, impact, and	Explain practical implications of
implications	implications of using blockchain technology	blockchain; analyse the
	on the business processes they drive, as	implications of blockchain for
	well as on a larger scale, also including	governance;
	social and ecological aspects.	
Explain distributed ledger	Explain the principles of the system	Explain distributed ledger
technologies principles	architecture underlying distributed ledger	technologies properties;
	technologies (DLT), in particular blockchain.	
	Understand the DLT system architecture in	
	terms of functional components in the core	
	and service layers, the application service	
	platform, DLT services, and external	
	services. Understand the interaction of these	
	components to provide DLT-based functions	
	such as consensus mechanism functions,	
	ledger management functions, smart	
	contract mechanism functions, and	

Concept name	Description	Alternative labels/synonyms
	distributed application management functions.	
Identify blockchain	Identify blockchain innovation opportunities	Use blockchain to drive
innovation opportunities	through the introduction of blockchain-based	innovation; analyse blockchain-
	solutions, within a particular sector, but also	based business innovation;
	across sectors. Understand the	
	consequences of essential blockchain	
	properties such as transparency and security	
	for driving forward innovations.	
outline blockchain-based	Outline blockchain-based identity	explain blockchain-based
identity management	management and access control in terms of	identity management system;
	how they work, what their benefits are	
	compared to current solutions, and how they	
	can be applied for specific applications.	
Recognise blockchain	Recognise opportunities for the introduction	Identify blockchain technology
application areas	of blockchain-based solutions in various	application domains; detect
	application domains (e.g., supply chains,	blockchain technology
	product-service systems, finances, etc.), as	application domains;
	well as their transformative potential in the	
	concerned application area in terms of	
	people's skills, roles theyneed to fulfill, and	
	processes these roles contribute to. Identify	
	the added value blockchain-based solutions	
	would bring with respect to traditional	
	solutions.	

Concept name	Description	Alternative labels/synonyms
Integrate blockchain	Integrate blockchain technology in new or	Incorporate blockchain
technology	existing ICT infrastructures, and understand	technology;
	the key challenges and solution approaches	
	to this integration.	
Implement cryptographic	Implement cryptographic constructs such as	Develop cryptographic
constructs	hashfunctions,symmetric-keyalgorithms,	constructs;
	and asymmetric-key algorithms, in the	
	context of specific applications.	
Recognise blockchain	Recognise risks associated with blockchain	Identify risks in blockchain
risks	and cryptocurrency. Apart from standard	technology; predict risks in
	risks associated with the business processes	blockchain technology;
	they are driving, blockchains bear value-	
	transfer risks linked to the peer-to-peer type	
	of value transfer. Risk are also linked to	
	smart contracts as digital representations of	
	more or less complexbusiness relationships.	
Analyse blockchain use	Analyse blockchain use cases in different	Evaluate blockchain use cases;
cases	sectors against their needs in terms of	investigate blockchain use
	blockchain technology and architecture.	cases;
	Particularly, key blockchain use cases in	
	Business, Finance and Banking such as	
	International Payments, Peer-to-Peer	
	Transactions, Capital Markets, Trade	
	Finance or Regulatory Finance and Audit.	
Define roadmap for	Define and follow a roadmap for the	Create a blockchain roadmap in
blockchain in applications	introduction of blockchain in a particular	applications;
	application. Identify the key actions and roles	
	required, as well as the essential milestones	
	and deliverables to achieve.	

2.2.5 SKILLS REQUIREMENTS AND WORKPLACE TASKS

CHAISE research on skills mismatches (CHAISE D2.5.1, 2021) identified a large diversity in terms of Blockchain strategy and regulation maturity across Europe. By conducting a topography of Blockchain occupations and job profiles in EU countries, the study gathers the characteristics of the Blockchain

professional profiles in terms of skills needed in the working environment. Table 5 describes the skills of Blockchain architect.

Technical & Blockchain specific Skills	Professional / Business Skills	Transversal Future Skills
 Blockchain Solution Design Data / Network Security Design Cloud Infrastructure Design A basic understanding of: Cryptography Development Distributed Network Engineering skills Smart Contract Development Development of Decentralised Apps 	 Business Needs Analysis BC Use Case Development Product Development skills Product Management skills Skills in Legal & Compliance matters 	 Learning literacy & Metacognitive skills Self-efficacy & Self- confidence Self-determination & Autonomy Decision Competence & Responsibility-taking Design-thinking Competence Innovation & Creativity skills System & Networked Thinking Future Minds et & Willingness to Change Cooperation Competence Communication Competence Ambiguity Competence

Table 6 Workplace requirements adapted from CHAISE D2.5.1, 2021

The daily routine of Blockchain architects, as identified in CHAISE Registry (2021) of Blockchain online job vacancies, includes:

Table 7 Daily routine of BC architect

Daily routine of BC Architect Professionals

- Develop blockchain infrastructures
- Design architecture, components, modules, interfaces and data for a decentralised system
- Choose development platform
- Determine functionalities
- Develop prototype
- Add privacy features

Co-funded by the Erasmus+ Programme of the European Union

Daily routine of BC Architect Professionals

- Improve UX
- Define technical requirements
- Interpret technical requirements
- Create business process models
- Design information systems
- Define software architecture
- Analyse ICT system

2.2.6 EMPLOYMENT OPPORTUNITIES

Currently, there is only little market data explicitly related to blockchain profiles (CHAISE D.2.2.1 report, 2021). The following list has been derived from a study on "Job vacancies characteristics" (CHAISE D.2.2.1, 2021, chapter 5.2).

- ICT sector (information technology & services; computer software; internet, telecommunications)
- Financial sector (financial services; banking industry)
- Management consulting
- Higher education
- Research industry
- Marketing and advertising

Blockchain skills are often embedded within the following job profiles:

- Software Engineer
- Full Stack Engineer
- Java Software Engineer
- Back End Developer

2.2.7 PROFICIENCY LEVELS AND CERTIFICATE TYPES OFFERED BY CHAISE

In compliance with the CHAISE Validation Methodology (CHAISE D.5.4, 2023), and in order to get qualified and certified for different level of proficiency, Blockchain Architects can pursue the following different certification paths:

- 4) Theory micro-certificates (badges) per CHAISE Skill Card Module (CHAISE D.6.3, 2023):
 - a. no prior experience required and

- b. course material study with integrated (in general, automated) competence evaluation and
- c. exam through a certifying organisation (ECQA).
- 5) Practical micro-certificates (badges) per CHAISE Skill Card Module:
 - a. elaboration of at least one practical example and one practical case study or
 - b. evidence of prior practical experience.
- 6) ECQA Summary Certificate summarizing all achievements 1) and 2).

2.3 BLOCKCHAIN MANAGER

2.3.1 ESCO DESCRIPTION

Contrary to the occupational profiles "Blockchain Developer" and "Blockchain Architect", the "Blockchain Manager" profile did not exist in the ESCO database when the CHAISE project started. In the context of WP6, and based on the outcomes of the previous CHAISE WPs, CHAISE proposed the introduction of this new occupational profile to ESCO. ESCO investigations based on their standard processes and models, revealed a *still very low amount of explicit "Blockchain Manager" online job vacancies*. However, in alignment with the results of CHAISE research, their more specialised investigations revealed significant presence of this occupation in different online documentation (such as expert's research). These insights led to the common decision to

- 1) introduce the alternative label Blockchain Manager in ESCO;
- 2) assign this new alternative label to the existing occupation ICT Project Manager;
- 3) link the blockchain-related skills that CHAISE has assigned to the Blockchain Manager occupation only, to the existing occupation ICT Project Manager.

According to the ESCO classification system, ICT Project Managers: "schedule, control and direct the resources, people, funding and facilities to achieve the objectives of ICT projects. They establish budgets and timelines, perform risk analysis and quality management, and complete project closure reports." (ESCO database, 2023).

ICT project ma	anager		Download 🗸						
Managers > Production and specialised services managers > Information and communications technology service managers > Information and communications technology service managers > ICT project manager >									
Description									
Code									
1330.7									
Description									
achieve the objectives of	nedule, control and direct t ICT projects. They establi: I complete project closure	sh budgets and timelines,	•						
Alternative Lab	els								
ICT project manager	ICT project managers	IT project manager							
IT projects manager	web project manager	web projects manager							

Figure 5 ESCO description IT project manager (adopted from ESCO database, 2023)

Under the skills' pillar, the skills and competences related to the Blockchain Architect profile are presented below:

Skills & Competences

Essential Skills and Competences

apply conflict management		build business relationships			coach er	mployees]	
create project specifications		estimate duration of work			identify leg	gal requirer	nents	
manage ICT project	mana	age budgets	n	nanage	project	t changes]	
manage project inforr	mation	manage s	taff	perfo	rm pro	ject manag	ement	
perform resource planning		perform risk analysis prov		provi	ide cost ber	nefit analys	is reports	
recruit employees	train er	nployees						

Essential Knowledge

ICT project management	ICT project management methodologies					
internal risk management po	licy	quality standards]			

Figure 6: ESCO essential skills-set ICT Project manager (adopted from ESCO database, 2023)

Optional Skills and Competences

apply change management	apply organisational techniques carry out project activities						
create solutions to problems	define technical requirements						
develop information standards	draft project documentation execute ICT audits						
implement ICT risk management maintain a central project repository							
maintain relationship with supplie	rs manage localisation organise project meetings						
perform procurement processes provide technical documentation							
use ICT ticketing system	e e-procurement						

Optional Knowledge

Agile development Agile project management DevOps ICT process quality mod								
ICT system user requirements Incremental development Iterative development								
Lean project management Open source model Outsourcing model								
Process-based management Prototyping development Rapid application development								
SaaS (service-oriented modelling) Spiral development Waterfall development								
crowdsourcing strategy document management hybrid model insourcing strategy								
legal requirements of ICT products object-oriented modelling outsourcing strategy								
project configuration management quality assurance methodologies								
service-oriented modelling software architecture models software design methodologies								
systems development life-cycle								

Figure 7: ESCO optional skills-set ICT Project manager (adopted from ESCO database, 2023)

2.3.2 REVISED SCOPE NOTE AND DEFINITION

Job Title: Blockchain Manager

Job Overview: The Blockchain Manager leads groups of developers and architects. The Blockchain Manager tracks the implementation progress and maintains close cooperation with business managers or marketing professionals to identify the market requirements for new Blockchain systems and applications. This role is responsible for monitoring the quality of process to ensure that products meet their technical and business objectives, including the ethical reflection of possible areas of application of the technology. It features communication with other stakeholders, such as department managers and marketing professionals.

Minimum entry requirements: There are no formal entry requirements for candidates undertaking these qualifications. Learners are advised to enter the course with a completed level 4 qualification in an area relevant to the job role or with equivalent professional experience.

Target groups (including ESCO classification): (24-) Business and Administration Professionals such as for example (2412) Financial and Investment Advisers, (2413) Financial Analysts, (2421) Management and Organisation Analysts, (2434) ICT Sales Professionals.

2.3.3 SKILLS REQUIREMENTS AND WORKPLACE TASKS

CHAISE research on skills mismatches (CHAISE D2.5.1, 2021) identified a large diversity in terms of Blockchain strategy and regulation maturity across Europe. By conducting a topography of Blockchain occupations and job profiles in EU countries, the study gathers the characteristics of the Blockchain professional profiles in terms of skills needed in the working environment. Table 7 describes the skills of Blockchain manager.

Technical & Blockchain specific Skills	Professional / Business Skills	Transversal Future Skills
General technical understanding of	Business (Needs)	Self-efficacy & Self-
Blockchain Solution	Analysis	confidence
Design	Business Development	Self-management/
Data Analysis	Skills	organization / regulation
Protocol Engineering	Product Development	& Self-responsibility
Smart Contract	Skills	Decision Competence &
Development	Product Management	Responsibility-taking
Development of	Skills	Initiative and performance
Decentralised Apps	Finance and Controlling	competence
Maths & Stats	Skills	Ambiguity Competence
	Human Resources	• Ethics & Environmental
	Development Skills	competence
	Customer Success	Innovation & Creativity
	Design	skills
	Affiliate Marketing	 Sensemaking
	Marketing Skills	Future Mindset &
	BC Use Case	Willingness to Change
	Development	Cooperation Competence

Table 8 Workplace requirements adapted from CHAISE D2.5.1, 2021

Technical & Blockchain specific Skills	Professional / Business Skills	Transversal Future Skills
	Skills in Legal & Compliance matters	Communication Competence

The daily routine of Blockchain managers, as identified in CHAISE Registry (2021) of Blockchain online job vacancies, includes:

Table 9 Daily routine of BC manager

Daily routine of BC Managing Professionals

- Develop blockchain implementation strategies, vision and goals
- Collaboration and communication with customers, developers and system architects
- Work with project and product management tools
- Lead business analyses
- Monitor human resources, finance and controlling
- Conduct sales and marketing (analyses)

2.3.4 EMPLOYMENT OPPORTUNITIES

Currently, there are only a few market data explicitly related to blockchain profiles (CHAISE D.2.2.1 report, 2021). The following list has been derived from a study on "Job vacancies characteristics" (CHAISE D.2.2.1, 2021, chapter 5.2).

- ICT sector (information technology & services; computer software; internet, telecommunications)
- Financial sector (financial services; banking industry)
- Sales
- Marketing and advertising
- Management
- Management consulting
- Research
- Research industry

2.3.5 PROFICIENCY LEVELS AND CERTIFICATE TYPES OFFERED BY CHAISE

In compliance with the CHAISE Validation Methodology (CHAISE D.5.4, 2023), and in order to get qualified and certified for different level of proficiency, Blockchain Managers can pursue the following different certification paths:

- 7) Theory micro-certificates (badges) per CHAISE Skill Card Module (CHAISE D.6.3, 2023):
 - a. no prior experience required and
 - b. course material study with integrated (in general, automated) competence evaluation and
 - c. exam through a certifying organisation (ECQA).
- 8) Practical micro-certificates (badges) per CHAISE Skill Card Module:
 - a. elaboration of at least one practical example and one practical case study or
 - b. evidence of prior practical experience.
- 9) ECQA Summary Certificate summarizing all achievements 1) and 2).

3 REVISED BLOCKCHAIN CONCEPTS AND KNOWLEDGE/SKILLS SPECIFICATIONS IN ESCO

The table below specifies the knowledge and skill concepts that CHAISE has proposed to ESCO, in the very form that the latter provided them back to the consortium after expert reviews and amendments. They will be accessible in this form from the next ESCO database update cycle at the end of 2023. This table's columns have the following meanings:

Column Title	Specification
Concept name	The name of the newly introduce knowledge/skill concept
Description	Short description of this concept
Alternative labels/synonyms	Alternative labels/synonyms in the ESCO database
Skill type	The concept specifies a knowledge or skill element
Skills reusability level	Sector-specific skill or cross-sector skill
Essential skill of	Occupational profile that needs to have the skill
Optional skill of	Occupational profiles that might need to have the skill (not used)
Broader/narrower skills	Higher-level skill cluster(s)
Hierarchy	Skill allocation to the ESCO skill hierarchy
Hierarchy URI	Unique Ressource Identifier of the skill in the ESCO database (points to parent in the skill hierarchy at this stage)
Label (Digital/Green)	Relevance of the skill to the green (environmental) or digital EU strategy

Concept name	Description	Alternative labels/synonyms	Skill type	Skills reusabil ity level	Essential skill of	Op tio nal ski II of	Broader/narro wer skills	Hierarchy	Hierarchy URI	Label (Digital/ Green)
game theory	The study of mathematical models of strategic decisions among stakeholders. It has applications in all fields of social science, as well as in systems science, computer science and logic. Essential concepts are the Nash Equilibrium and the Prisoner's Dilemma.	conflict resolution theory; rational choice theory; interactive decision theory; game theory for blockchain	knowledge	Cross- sector	blockchain developer;		Broader concept: mathematics and statistics	mathematics and statistics	http://data.e uropa.eu/es co/isced- f/054	N.A.
blockchain concept application	The process of transferring essential blockchain and, more generally, distributed ledger concepts to diverse application domains. For this, the domain- specific challenges, solutions, and consequences of introducing peer-to-	blockchain technology application;	knowledge	Cross- sector	blockchain architect;		Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0612	Digital

smart contract programming languages	peer transaction and consensus patterns need to be well understood. Essential Smart Contract programming languages include Solidity, Rust, JavaScript, Vyper and Yul.	programming languages for smart contract;	knowledge	Sector- specific	blockchain developer;		Broader concept: software and applications development and analysis	software and applications development and analysis	http://data.e uropa.eu/es co/isced- f/0613	Digital
blockchain signature schemes	Essential digital signature schemes include the RSA scheme, the El- Gamal scheme, Hash functions, Birthday Attacks, the Digital Signature Standard.	digital signature schemes; signature schemes for blockchain	knowledge	Sector- specific	blockchain architect;		Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0612	Digital
blockchain mining principles	Essential blockchain and cryptocurrency mining types and principles include ASIC mining, GPU mining, CPU mining, Cloud mining, and Mining pools.	principles of mining in blockchain;	knowledge	Sector- specific	blockchain architect; blockchain developer; l project manager	СТ	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0612	Digital
blockchain design patterns	Re-usable blockchain solution approaches including non-blocking user	design patters of blockchain	knowledge	Sector- specific	blockchain architect; blockchain developer;		Broader concept: software and applications	software and applications development and analysis	http://data.e uropa.eu/es co/isced- f/0613	Digital

45

	interface design, asynchronous API design, secure synchronization, time stamping, enterprise business integration, simple assets, and assets with rules. Design processes for					development and analysis			
design process for blockchain- based systems	blockchain-based systems which involves the clear identification of problems to be solved through blockchain, specifying the business requirements, identifying a consensus mechanism, choosing the most suitable blockchain platform, designing the blockchain nodes, planning the blockchain configuration, building blockchain APIs, designing user	design of a blockchain-based system; design process for blockchain application architecture; design process for blockchain technology;	skill	Sector- specific	blockchain developer; blockchain architect;	Broader concept: designing ict systems or applications	S 1.11.1 designing ict systems or applications	http://data.e uropa.eu/es co/skill/b590 d4e5-7c62- 4b4a-abc2- c270b482e0 ce	Digital

decentralised identifiers	interfaces, and integrating accelerators for optimization. The knowledge of decentralised identifiers (DIDs). DIDs enable verifiable and decentralised digital identity related to different subjects determined bythe controllers of these descentralised identifiers (e.g. an organisation, individual person, data model, abstract entity).	DiDs	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0612	Digital
digital identity management	The process of providing, managing, auditing and securing digital identities to facilitate and enable approved, authentic requests or connections to view company data, services, systems,	IAM; digital identity methods;	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	Under database and network design and administration	http://data.e uropa.eu/es co/isced- f/0612	Digital

	networks, and assets.								
distributed ledger technologies vulnerabilitie s	The knowledge of the essential distributed ledger vulnerabilities including exchange hack, 51% attack, exitscam, extortion, DeFi, phishing, and conclusion.	security in distributed ledger technology;	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0613	Digital
data security principles	The principles of information and data security. They include, among others, confidentiality, integrity, and availability.	information security principles; data security methods	knowledge	Sector- specific	blockchain architect;	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0613	Digital
blockchain application areas	The study of the areas in which blockchain is implemented. Banking and Finance, Businesses (Supply Chain Management, Healthcare, Real Estate, Media, Energy), and Government are some examples of	areas of blockchain application; blockchain application fields;	knowledge	Cross- sector	blockchain architect; blockchain developer	Broader concept: software and applications development and analysis	Under software and applications development and analysis	http://data.e uropa.eu/es co/isced- f/0613	Digital

D6.3.1 - Blueprint of a Blockchain Specialist Qualification

48

	this application areas.								
blockchain- based business models	The study of diverse blockchain business models such as Blockchain-Based Software Products, Blockchain Development Platforms, Token Economy-Utility Token Business Model, P2P Blockchain Business Model, as well as Blockchain as a Service Business Model (BaaS).	models for blockchain-based business;	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0613	Digital
blockchain applications security principles	The essential security principles, methods and controls for blockchain applications. Identity and access management, key management, data privacy, secure communication, smart contract security, and transaction	blockchain security; security controls for blockchain applications;	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0613	Digital

49

Co-funded by the Erasmus+ Programme of the European Union

blockchain terminology	endorsement are included as part of these principles. The terms used in blockchain sector which include account, attestation, block, Byzantine fault, coin, consensus, crypto-, decentralized application (DApp), DeFi, digital identity, distributed ledger, encryption, ether, fork, hyperledger, Merkle trie, mining, node, NFT, Proof of Authority, Proof of Stake, Proof of Work, public/private blockchain, trustless, validity proof, 51% attack, etc.	blockchain terms; terminologyof blockchain	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0613	Digital
blockchain- based services regulation	Key legal regulations around the blockchain, both existing and emerging ones. In Europe, regulations around the Digital Euro and Crypt-	regulatory framework for blockchain; legal regulations for blockchain; legal guidance for blockchain;	knowledge	Cross- sector	blockchain architect; blockchain developer	concept: inter- disciplinary programmes and qualifications involving information and	disciplinary programmes and qualifications involving information and communication	http://data.e uropa.eu/es co/isced- f/0688	Digital

	Assets, as well as the Pan-European blockchain regulatory sandboxare considered most essential.					communication technologies (icts)	technologies (icts)		
blockchain history	Key historical facts and milestones in the blockchain technologyas well as the implementations and applications that emerged on top of it.	history of blockchain; blockchain technology history;	knowledge	Sector- specific	blockchain architect; blockchain developer;	Broader concept: inter- disciplinary programmes and qualifications involving information and communication technologies (icts)	inter- disciplinary programmes and qualifications involving information and communication technologies (icts)	http://data.e uropa.eu/es co/isced- f/0688	Digital
blockchain applications	The knowledge of applications where blockchains can provide significant added value. They include applications in Banking and Finance (International Payments, Capital Markets, Trade Finance, Regulatory Finance and Audit, Money Laundering Protection,	blockchain functions;	knowledge	Cross- sector	blockchain architect; blockchain developer	Broader concept: computer use	computeruse	http://data.e uropa.eu/es co/isced- f/0611	Digital

blockchain components	Insurance, Peer-to- Peer Transactions) and Business (Supply Chain Management, Healthcare, Real Estate, Media, Energy), Government (Identity Management, Voting, Taxes, Non- Profit Agencies, Compliance/Regulat ory Oversight). The study of essential blockchain components and concepts as peer networks, smart contracts, memberships, events, ledgers, system integration, wallets, and system	blockchain concepts; blockchain;	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0613	Digital
distributed ledger technologies consensus protocols	management. The knowledge of essential blockchain consensus protocols including Proof-of- Work (PoW), Proof- of-Stake (PoS), Delegated Proof-of-	consensus protocols of distributed ledger technologies;	knowledge	Sector- specific	blockchain architect; blockchain developer	Broader concept: database and network design and administration	database and network design and administration	http://data.e uropa.eu/es co/isced- f/0613	Digital

52

recognise blockchain application areas	Stake (DPoS), Practical Byzantine Fault Tolerance (pBFT). Recognise opportunities for the introduction of blockchain-based solutions in various application domains (e.g., supplychains, product-service systems, finances, etc.), as well as their transformative potential in the concerned application area in terms of people's skills, roles they need to fulfill, and processes these roles contribute to. Identify the added value blockchain- based solutions would bring with respect to traditional solutions.	identify blockchain technology application domains; detect blockchain technology application domains;	skill	Sector- specific	blockchain architect; blockchain developer;	Broader concept: designing ict systems or applications Broader	S1.11.1 designing ict systems or applications	http://data.e uropa.eu/es co/skill/b590 d4e5-7c62- 4b4a-abc2- c270b482e0 ce	Digital
recognise blockchain risks	Recognise risks associated with blockchain and	identify risks in blockchain technology; predict	skill	Sector- specific	blockchain architect;	concept: performing risk	S 2. 7. 5 performing risk	http://data.e uropa.eu/es co/skill/7e15	Digital

	cryptocurrency. Apart from standard risks associated with the business processes they are driving, blockchains bear value-transfer risks linked to the peer-to-peer type of value transfer. Risk are also linked to smart contracts as digital representations of	risks in blockchain technology;			blockchain developer;	analysis and management	analysis and management	3e1d-2b12- 43ad-89f3- 0cf82ebc4a3 0	
explain blockchain implications	complexbusiness relationships. Explain the consequences, impact, and implications of using blockchain technologyon the business processes they drive, as well as on a larger scale, also including social and ecological	explain practical implications of blockchain; analyse the implications of blockchain for governance;	skill	Sector- specific	blockchain architect; blockchain developer;	Broader concept: information skills	S 2.0.0. information skills	http://data.e uropa.eu/es co/skill/cd9c 487e-09ad- 4b82-854b- 118feb01f2e d	Digital
identify blockchain	aspects. Identify blockchain innovation opportunities through	use blockchain to drive innovation; analyse blockchain-	skill	Sector- specific	blockchain architect;	Broader concept:	S.4.1.1. identifying opportunities	http://data.e uropa.eu/es co/skill/cbe1	Digital

innovation	the introduction of	based business			blockchain	identifying		b24e-00f3-	
opportunities	blockchain-based	innovation;			developer;	opportunities		4b17-94e9-	
	solutions, within a							1fcd34a11c3	
	particular sector, but							е	
	also across sectors.								
	Understand the								
	consequences of								
	essential blockchain								
	properties such as								
	transparencyand security for driving								
	forward innovations.								
	Outline blockchain-								
1	based identity								
	managementand								
	access control in					Broader	0 /	http://data.e	
outline	terms of how they	explain blockchain-			blockchain	concept:	S.5.5.1	uropa.eu/es	
blockchain- based	work, what their	based identity	skill	Cross-	architect;	browsing,	browsing,	co/skill/258f ea29-09db-	Digital
identity	benefits are	management	SKIII	sector	blockchain	searching and	searching and filtering digital	4918-8235-	Digital
management	compared to current	system;			developer	filtering digital	data	0d7d529cd3	
management	solutions, and how					data	uala	1c	
	they can be applied							10	
	for specific								
	applications.								
	Explain the principles							http://data.e	
explain	of the system architecture				blockchain	Broader	S.5.1.0	uropa.eu/es	
distributed	underlying	explain distributed		Cross-	architect:	concept:	programming	co/skill/a8c3	
ledger	distributed ledger	ledger technologies	skill	sector	blockchain	programming	computer	186b-c791-	Digital
technologies	technologies (DLT),	properties;		00000	developer	computer	systems	4d57-8f4f-	
principles	in particular				2010100001	systems		4d12c7a5c6	
	blockchain.							а7	

D6.3.1 - Blueprint of a Blockchain Specialist Qualification

55

	Understand the DLT system architecture in terms of functional components in the core and service layers, the application service platform, DLT services, and external services. Understand the interaction of these components to provide DLT-based functions such as consensus mechanism								
	functions, smart contract mechanism functions, and distributed application management functions.								
evaluate blockchain architectures	Evaluate blockchain architectures with respect to their suitability for specific applications, given the specific	evaluate blockchain applications infrastructure;	skill	Cross- sector	blockchain architect; blockchain developer	Broader concept: designing ict systems or applications	S 1.11.1 designing ict systems or applications	http://data.e uropa.eu/es co/skill/b590 d4e5-7c62- 4b4a-abc2-	Digital

	importance and priorities of architecture properties for these applications.								c270b482e0 ce	
develop blockchain innovative architectures	Develop new blockchain architectures that address properties and priorities as they are needed by specific applications. Argue the advantages and shortcomings of such new architectures with respect to existing ones.	build innovative blockchain architectures;	skill	Cross- sector	blockchain architect; blockchain developer		Broader concept: designing ict systems or applications	S 1.11.1 designing ict systems or applications	http://data.e uropa.eu/es co/skill/b590 d4e5-7c62- 4b4a-abc2- c270b482e0 ce	Digital
integrate blockchain technology	Integrate blockchain technologyin new or existing ICT infrastructures, and understand the key challenges and solution approaches to this integration.	incorporate blockchain technology;	skill	Cross- sector	blockchain architect; ICT project manager	-	Broader concept: setting up computer systems	S 5.2.1 setting up computer systems	http://data.e uropa.eu/es co/skill/f839 b1da-78b6- 4466-86f4- a5798821ea 20	Digital
implement cryptographi c constructs	Implement cryptographic constructs such as hash functions, symmetric-key algorithms, and	develop cryptographic constructs;	skill	Sector- specific	blockchain architect		Broader concept: setting up computer systems	S 5.2.1 setting up computer systems	http://data.e uropa.eu/es co/skill/f839 b1da-78b6- 4466-86f4-	Digital

D6.3.1 - Blueprint of a Blockchain Specialist Qualification

57

analyse decentralised applications	asymmetric-key algorithms, in the context of specific applications. Analyse decentralized applications for their specific performance requirements in terms of key functions and properties such as identify management, access control, data security, transparency, performance, scalability, and maintainability.	analyse dApps;	skill	Cross- sector	blockchain developer	Broader concept: designing ict systems or applications	S 1.11.1 designing ict systems or applications	a5798821ea 20 http://data.e uropa.eu/es co/skill/b590 d4e5-7c62- 4b4a-abc2- c270b482e0 ce	Digital
implement smart contracts	Implement smart contracts for various applications, and in the most important smart contract frameworks such as Bitcoin and Ethereum, and in the most suitable programming languages such as Solidity, Rust,	applysmart contracts;	skill	Cross- sector	blockchain developer	Broader concept: designing ict systems or applications	S 1.11.1 designing ict systems or applications	http://data.e uropa.eu/es co/skill/b590 d4e5-7c62- 4b4a-abc2- c270b482e0 ce	Digital

	JavaScript, Vyper and Yul.									
analyse blockchain use cases	Analyse blockchain use cases in different sectors against their needs in terms of blockchain technologyand architecture. Particularly, key blockchain use cases in Business, Finance and Banking such as International Payments, Peer-to- Peer Transactions, Capital Markets, Trade Finance or Regulatory Finance and Audit.	evaluate blockchain use cases; investigate blockchain use cases;	skill	Cross- sector	blockchain architect		Broader concept: browsing, searching and filtering digital data	S 5.5.1 browsing, searching and filtering digital data	http://data.e uropa.eu/es co/skill/258f ea29-09db- 4918-8235- 0d7d529cd3 1c	Digital
define roadmap for blockchain in applications	Define and follow a roadmap for the introduction of blockchain in a particular application. Identify the key actions and roles required, as well as the essential milestones and deliverables to achieve.	create a blockchain roadmap in applications;	skill	Cross- sector	blockchain architect; IC project manager	T	Broader concept: designing ict systems or applications	S 1.11.1 designing ict systems or applications	http://data.e uropa.eu/es co/skill/b590 d4e5-7c62- 4b4a-abc2- c270b482e0 ce	Digital

59

Co-funded by the Erasmus+ Programme of the European Union

4 MAPPING OF CHAISE LEARNING OUTCOMES TO ESCO CLASSIFICATION SYSTEM

The table below specifies the knowledge and skill concepts that CHAISE has proposed to ESCO, in the very form that the latter provided them back to the consortium after expert reviews and amendments. They will be accessible in this form from the next ESCO database update cycle at the end of 2023. This table's columns have the following meanings:

Column Title	Specification
CHAISE LO	CHAISE Learning Outcome
CHAISE OP	CHAISE Occupational Profile
ESCO Skill (existing)	Existing ESCO skill(s) matching the Learning Outcomes
ESCO Skill (new)	New skill(s) matching the Learning Outcomes, proposed for ESCO
CHAISE Knowledge	CHAISE knowledge item
ESCO Knowledge (existing)	Existing ESCO knowledge item(s) matching the Learning Outcomes
ESCO Knowledge (new)	New knowledge item(s) matching the Learning Outcomes, proposed for ESCO

CHAISE LO	CHAISE OP	ESCO Skill (existing)	ESCO Skill (new)	CHAISE Knowledge	ESCO Knowledge (existing)	ESCO Knowledge (new)
LO1.1: Describe the main concepts and components of the Blockchain technology	A, D, M			Key blockchain technology components and application sectors	principles of distributed ledger technology	blockchain concepts and components
LO1.2: Recognize the sectors where the blockchain technology can be applied	A, D, M		recognize blockchain application areas	Main historical facts of the blockchain technology development	blockchain openness	blockchain applications
LO1.3: Recall the main historical facts of the blockchain technology development.	A, D, M				computer history	blockchain history
LO2.1: Describe blockchain-related legal environment in Europe and the World.	A, D, M	ensure products meet regulatory requirements		Blockchain-related legal environment.	legal requirements of ICT products	legal environment of blockchain-based products and services
LO2.2: Explain regulatory framework of blockchain based financial services.	A, D, M			Legal underpins of Blockchain technologyand smart contracts.		
LO2.3: Recognize legal and regulatory issues and risks when dealing	A, D, M	manage ICT data architecture, respect data	recognize blockchain and cryptocurrency risks	Legal implications of cryptocurrencies.		

with an interpretation of		protoction	[[
with cryptocurrency and		protection				
blockchain technology.		principles				
LO2.4: Discuss the						
interest of Blockchain				Legal status of the		
technologyto manage	A, D, M			decentralized	security regulations	
consent and data	7, D, W			autonomous	security regulations	
access				organizations.		
LO2.5: Explain						
implications of						
blockchain technology			explain implications of			
for governments, policy	A, D, M		blockchain technology	GDPR requirements and	GDPR	
makers, law	7, D, M		and governance	consentmanagement	OD I K	
professionals,			ana govornanco			
regulators and society.						
LO2.6: Illustrate the				Blockchain and public		
impact of the				policy,		
blockchain governance	A, D, M			governmental		
on policy effectiveness.				regulations		
				Implications of		
				blockchain		
				technologyfor society,		
				regulators, policy		
				makers,		
				governments, law		
				professionals.		

LO3.1: Explain main terminology of blockchain and distributed ledger technology	A, D, M	apply ICT terminology	dif ce an	lockchain terminology, ifferences between entralized database nd istributed ledger.		blockchain terminology
LO3.2: Discuss mechanics of decentralized applications.	A, D, M		ap ne sn co pu	ecentralized pplications, etwork performance, mart ontracts, ublic/private/consortium etworks.	decentralized application frameworks	
LO3.3: Describe characteristics and components.	A, D, M		ap co toj ne co	lockchain-based pplication omponents (e.g., peer- opeer etwork, smart ontracts, onsensus, etc.)		
LO3.4: Explain security features of the blockchain applications.	A, D, M		blo ap	asic principles of the lockchain-based pplication ecurity		blockchain application security principles

LO4.1: Explain what capabilities of blockchain technology enable innovating existing businesses and processes.	A, D, M	think innovately, seek innovation in current practices	identify innovation opportunities enabled by blockchain technology	Fundamental principles of the blockchain technology suitabilityfor business innovation.	principles of distributed ledger technology	
LO4.2: Describe the fundamental business model of blockchain use cases.	A, D, M			Criteria of blockchain technologyto be applicable in the business use cases.	business model	blockchain-based business models
LO4.3: Analyse different implementations of blockchain business use cases.	A, D, M			Different application areas / industries for a meaningful use of blockchain technology		blockchain application areas
LO4.4: Examine when blockchain technology becomes a viable option for a business use case.	A, D, M			Ethical and environmental aspects associated with blockchain.	ethics	
LO5.1: Describe how blockchains may secure data, information, and processes by utilizing the transaction	A, D			Information and data security principles.		Information and data security principles

64

Co-funded by the Erasmus+ Programme of the European Union

protection and validation principles of blockchains.					
LO5.2: Recognize security vulnerabilities and emerging security challenges in blockchain-based applications, as well as the security flaws in smart contracts.	A, D			Countermeasures to secure blockchain transactions.	vulnerabilities in distributed ledger technologies
LO5.3: Explain identity management principles and access control models within blockchain-based applications.	A, D		explain blockchain- based identity management and access control	Security challenges and smart contract vulnerabilities.	digital identity management
LO5.4: Describe blockchain based personallyidentifiable information, self- sovereign identity, and decentralized identifiers (DIDs) to address digital identity problems.	A, D	manage digital identity		Blockchain access control principles, Digital identity management principles.	decentralized identifiers (DiD)

LO6.1: Explain fundamental design and architectural primitives of DLT system architecture, e.g., trust-less, permissionless, asynchronous, sybil protection.	A, D	Explain principles of DLT system architecture	Design process for blockchain systems.		design process for blockchain-based systems
LO6.2: Employ design patterns and reusable proved solutions to explain blockchain system development.	A, D		Blockchain design patterns, e.g., Merkel root for verifiable inclusion, longest chain, BFT for finality.		blockchain design patterns
LO6.3: Compare different consensus protocols.	A, D		Consensus protocols (Proof of Work, Proof of Stake, Proof of Capacity, Byzantine Fault Tolerance, etc.).	blockchain consensus mechanisms	DLT consensus protocols
LO6.4: Evaluate the blockchain architecture solutions to different practical scenarios.	A, D	evaluate blockchain architectures	Infrastructure design, in particular P2P network.		

D6.3.1 - Blueprint of a Blockchain Specialist Qualification

66

LO6.5: Further develop existing blockchain architectures and apply them to new contexts in a creative way.	A, D	innovate blockchain architectures			
LO7.1: Describe different blockchain platforms (e.g., Ethereum, Hyperledger, IOTA, Corda, etc.). LO7.2: Explain blockchain technology ecosystem, underlying	M		Blockchain platforms, such as Ethereum, Hyperledger, IOTA, Corda, etc. Principles of transaction, smart contract, and	blockchain platforms principles of distributed	
basic algorithms and essentials of trust.			mining principles.	ledger technology	
LO7.3: Describe the workings of a blockchain, its operations/transactions, blocks, smart contracts, and mining principles.	Μ		Network types and performance.	smartcontract	blockchain mining principles

LO7.4: Demonstrate the node creation on the Ethereum blockchain, devise accounts, unlock accounts, mine, transact, transfer Ethers and check balances.	М	integrate blockchain technology		
LO8.1: Explain the role of marketing.	М			
LO8.2: Demonstrate strategies for customer support and service design.	М			
LO8.3: Analyse role of networks and customer relationship management for blockchain technologies.	Μ			
LO8.4: Illustrate products, prices, promotion, and sales strategies for blockchain technology.	М			

LO8.5: Create awareness for blockchain use among broader audience and communicate the benefits of the technology in an accessible way.	Μ				
LO9.1: Apply fundamental concepts of hash function, Merkle tree commitment scheme, proof of inclusion.	A		Most used cryptographic primitives in BC	ICT Encryption	
LO9.2: Apply major signature schemes used in the blockchain technologies.	A		Cryptography measures used in transaction management, access control, privacy management.	ICT Encryption	blockchain signature schemes
LO9.3: Employ cryptographic protocols and public key infrastructure for enforcing practical security goals in the blockchain-based applications.	A		Authentication, integrity protection methods.	ICT Encryption	

LO9.4: Apply programming tools to implement cryptographic constructions used in the blockchain-based applications.	A	Implement cryptographic constructs	Combine primitives to create secure protocol components.	
LO10.1: Apply good practices for developing smart contracts and describe the advantage of blockchain technology.	D		Frontend and Backend development.	
LO10.3: Analyse decentralized applications, tokenization, voting, auctions, remote selling and etc.	D	analyze decentralized applications	User experience (UX) design principles.	
LO10.3: Apply smart contract programming language (i.e., syntax and concepts like state variables, storage, functions, visibility, mappings, etc).	D	implementsmart contracts	Smart contract design and implementation.	smart contract programming language

LO10.4: Design, develop and deploya smart contract for blockchain applications.	D	implementsmart contracts	Programming languages (e.g., solidity, Rust, JavaScript, etc.)	
LO11.1: Analyse the customer profile, debate different ways to innovate, and map the	A, M	analyse blockchain use cases	Principles to identify the blockchain application	
value proposition of a blockchain use case.		03000303	customers.	
LO11.2: Redesign heuristics and model the process flow of the blockchain use case.	A, M		Processes and method to redesign the traditional process flows to the blockchain-based use cases.	
LO11.3: Collect and prioritize requirements for defining a minimal viable product (MVP) for the blockchain use case.	А, М		Product development principles using blockchain applications.	
LO11.4: Manage the roadmap for the blockchain use case.	А, М	introduce blockchain in an application over time		
LO11.5: Transfer existing concepts of	A, M			blockchain concept application

blockchain use cases to new contexts				
LO12.1: Illustrate basic concepts from game theory with a blockchain application for remote purchases.	D, M		Game theory concepts used in blockchain applications.	gametheory
LO12.2: Describe and define advanced concepts from game theory.	D, M		Game theory models applied in blockchain- based solutions.	game theory for blockchain
LO12.3: Discuss the theoretic game approach from the fees in a blockchain network.	D, M			
LO12.4: Illustrate the game theory behind proof of stake.	D, M			

REFERENCES

- 1. Cedefop (2010). Learning Outcomes Approaches in VET Curricula: A Comparative Analysis of Nine European Countries, Luxembourg: Publications Office of the European Union.
- 2. Cedefop (2015). Work-based learning in continuing vocational education and training: policies and practices in Europe, Luxembourg: Publications Office.
- 3. Cedefop (2019). Comparing Vocational Education and Training Qualifications: towards a European Comparative Methodology, Luxembourg: Publications Office.
- 4. Cedefop (2020a). NQF Developments 2019. National qualifications frameworks bring European education and training systems closer together and closer to end users, Cedefop briefing note. <u>https://www.cedefop.europa.eu/en/press-releases/how-national-qualifications-frameworks-bring-education-and-training-systems-closer</u>
- 5. Cedefop (2020b). Vocational education and training in Germany: short description, Luxembourg: Publications Office. <u>http://data.europa.eu/doi/10.2801/329932</u>
- Cedefop (2021a). Review and renewal of qualifications: towards methodologies for analysing and comparing learning outcomes, Luxembourg: Publications Office. Cedefop research paper, No 82. <u>http://data.europa.eu/doi/10.2801/615021</u>
- Cedefop (2021b). Vocational education and training in Europe, Greece October 2021. Available at: <u>https://www.cedefop.europa.eu/en/tools/vet-in-europe/systems/greece-u2</u> (last accessed: 15.03.2023).
- Cedefop (2021c). Analyzing and comparing VET qualifications, Cedefop briefing note, August 2021. <u>http://data.europa.eu/doi/10.2801/356418</u>
- Cedefop (2022a). Microcredentials for labour market education and training: first look at mapping microcredentials in European labour-market-related education, training and learning: take-up, characteristics and functions. Luxembourg: Publications Office. Cedefop research paper, No 87. <u>http://data.europa.eu/doi/10.2801/351271</u>
- Cedefop (2022b). Comparing vocational education and training qualifications: towards methodologies for analysing and comparing learning outcomes. Work Assignment 2: Exploring, gathering and analysing national qualifications data. Luxembourg: Publications Office. Cedefop reference series, No 121. <u>http://data.europa.eu/doi/10.2801/939766</u>

- 11. Cedefop (2023). Delivering the training modules, Resources for guidance: Developing information technologies and labour market information in lifelong guidance. https://www.cedefop.europa.eu/en/tools/resources-guidance/training-modules/delivering-training-modules (last accessed: 19.04.2023)
- CHAISE (2021). Registry of Blockchain online job vacancies. Available: <u>https://chaise-blockchainskills.eu/registry-of-blockchain-educational-and-training-offerings/</u>. (last accessed: 30.03.2023).
- 13. CHAISE: D.2.2.1 (April 2021). Study on Blockchain Labour Market Characteristics, URL: https://chaise-blockchainskills.eu/wp-content/uploads/2021/05/D2.2.1-Study-on-Blockchainlabourmarket-characteristics.pdf (last accessed: 31.01.2023)
- 14. CHAISE: D2.3.1: (July 2021). Study on Blockchain Skills Demand, URL: https://chaiseblockchainskills.eu/wp-content/uploads/2021/09/CHAISE D2.3.1 Study-on-Blockchain-SkillDemand.pdf (last accessed: 31.01.2023)
- 15. CHAISE: D2.4.1: (June 2021). Study on Blockchain Skill Supply, URL: https://chaiseblockchainskills.eu/wp-content/uploads/2021/11/CHAISE WP2 D2.4.1 Studyon-Blockchain-skillsupply.pdf (last accessed: 31.01.2023)
- 16. CHAISE: D2.5.1 (November 2021). Study on Skills Mismatches in the European Blockchain Sector, URL: <u>https://chaise-blockchainskills.eu/wp-</u> <u>content/uploads/2021/11/CHAISE WP2 D2.5.1 Study-on-Skills-Mismatches-in-the-</u> <u>blockchain-sector.pdf</u> (last accessed: 31.01.2023)
- 17. CHAISE: D5.5.1 (April 2022). Blockchain Learning Outcomes Report, URL: <u>https://chaise-blockchainskills.eu/wp-content/uploads/2022/11/CHAISE-D5.1.1 Blockchain-Learning-Outcomes-Report.pdf</u> (last accessed: 14.03.2023)
- 18. CHAISE: D5.2.1 (June 2022). *Curriculum Structure*, URL: <u>https://chaise-blockchainskills.eu/wp-content/uploads/2022/11/D5.2.1 CHAISE-curriculum-structure.pdf</u> (last accessed: 14.03.2023)
- CHAISE: D4.3.1 (March 2022). European Blockchain Skills Strategy, URL: <u>https://chaise-blockchainskills.eu/wp-content/uploads/2022/05/CHAISE-European-Blockchain-Skills-Strategy.pdf</u> (last accessed: 14.03.2023)

- 20. Council of the European Union (2011). *Council resolution on a renewed European agenda for adult learning*, Official Journal of the European Union, C 372, 20.12.2011, pp. 1-6. <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2011:372: 0001:0006:en:PDF</u>
- Council of the European Union (2017). Council Recommendation of 22 May 2017 on the European Qualifications Framework for lifelong learning and repealing the recommendation of the European Parliament and of the Council of 23 April 2008 on the establishment of the European Qualifications Framework for lifelong learning, Official Journal of the European Union, C 189, 15.6.2017, p. 15–28. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017H0615(01)
- Council of the European Union (2018). Council Recommendation of 15 March 2018 on a European Framework for Quality and Effective Apprenticeships, Official Journal of the European Union, C 153, 2.5.2018, pp. 1-6. <u>https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELE X% 3A32018H0502%2801%29</u>
- 23. European Parliament and Council of the European Union (2009a). Recommendation of the European Parliament and of the Council of 18 June 2009 on the establishment of a European Quality Assurance Reference Framework for Vocational Education and Training (Text with EEA relevance). Official Journal of the European Union, C 155, 8.7.2009, p. 1–10 <u>https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009H0708(01)&qid=1611571795661</u>
- 24. European Parliament and Council of the European Union (2009b). Recommendation of the European Parliament and of the Council of 18 June 2009 on the establishment of a European Credit System for Vocational Education and Training (ECVET) (Text with EEA relevance), Official Journal of the European Union, C 155, 8.7.2009, p. 11–18. <u>https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009H0708%2802%29</u>
- 25. European Union, 2021. *Centres of vocational excellence (CoVEs)*. https://www.bibb.de/dokumente/pdf/CoVE 16Apr update.pdf (last accessed: 18.04.2023).
- Federal Institute for Vocational Education and Training (2014). *Training regulations and how they come about*, BIBB, Bonn. <u>https://www.bibb.de/dokumente/pdf/Germany%20-%20Training%20Regulations%20and%20How%20They%20Come%20About.pdf</u>, (last accessed: 18.04.2023).
- 27. Federal Institute for Vocational Education and Training (2017). *Quality assurance of company based training in the dual system in Germany,* BIBB, Bonn. <u>https://www.bibb.de/dienst/veroeffentlichungen/en/publication/show/8548</u> (last accessed: 18.04.2023).

75

- 28. INATBA for CHAISE (2022). WP4 Skill Strategy consultation Survey results analysis, URL: https://chaise-blockchainskills.eu/strategy/ (last accessed 10.03.2023).
- 29. Nielsen Norman Group (2020). 10 Usability Heuristics for User Interface Design. URL: https://www.nngroup.com/articles/ten-usability-heuristics/ (last accessed 10.03.2023).

